

Assessment of various contaminants in accommodations and offices

Baffinland Iron Mines corp.

Mary River Mine and Milne Port Site (Nunavut)

December 2020

File # : HDS-8664-2

Hudon Desbiens St-Germain Environnement inc.

640, rue Saint-Paul Ouest, Bureau 100 Montréal (Québec) H3C 1L9 Tél.: (514) 398-0553 Fax: (514) 398-0554 info@hdsenv.com www.hdsenv.com

TABLE OF CONTENT

1	INTRODUCTION1					
	1.1 1.2 1.3	Mandate and Objectives				
2	SITE	S DESCRIPTIONS & OPERATING CONDITIONS				
	2.1 2.2	Sites descriptions2 Conditions during surveys2				
3	GUI	DELINE VALUES				
	3.1 3.2 3.3 3.4 3.5	Indoor noise levels 3 Whole-body vibrations 3 Mould spores 4 Illuminance 5 IAQ 6 3.5.1 T and RH 6 3.5.2 CO 6 3.5.3 CO2 7				
4	МЕТ	HODOLOGY				
	4.1 4.2 4.3 4.4 4.5 4.6	Sampling strategy8Indoor noise levels8Whole-body vibrations8Mould spores9Illuminance9IAQ10				
5	RES	ULTS12				
	5.1 5.2 5.3 5.4 5.5	Indoor noise levels12Whole-body vibrations14Mould spores16Illuminance19IAQ21				
6	CON	ICLUSIONS AND RECOMMENDATIONS24				
	6.1 6.2 6.3 6.4 6.5	Indoor noise levels24Whole-body vibrations24Mould spores25Illuminance25IAQ26				
REF	EREN	VCES				

TABLES

Assessment of various contaminants in accommodations and offices

Baffinland Iron Mines corp., Mary River Mine, Milne Port site (Nunavut)

TABLES	Page
Table 1. Illuminance levels (ANSI/IES and COHSR)	5
Table 2. Guidelines for exposure to CO	7
Table 3. IAQ qualitative scale (CO ₂ levels)	7
Table 4. Sampling strategy	11
Table 5. Results – Indoor noise levels in accommodation facilities	13
Table 6. Results- Vibrations in accommodation facilities	15
Table 7. Results- Mould spores in accommodation facilities, Mine site	17
Table 8. Results- Mould spores in accommodation facilities, Milne Port site	18
Table 9. Results- Illuminance levels in offices	20
Table 10. Results – IAQ in offices	22
Table 11. Results – IAQ in accommodations	23

APPENDICES

- Appendix A Calibration certificates
- Appendix B Dosimetry session reports
- Appendix C Vibration session reports
- Appendix D Certificate of analysis

WORK TEAM

Baffinland Iron Mines corporation

Shawn Stevens	Manager Health, Safety, Environment and Security
Jeff Jamieson	Health, Safety & Security Superintendent
Joe Nicholson	Health, Safety & Security Superintendent
Doug Sulliman	Health and Safety Coordinator
Wayne LeDrew	Health and Safety Coordinator

Hudon Desbiens St-Germain Environnement inc.

Jean-Paul Ballot, Eng. & ROH Registred Occupational Hygienist

Henintsoa Rakotomalala, Eng. Industrial Hygiene Professional

1 INTRODUCTION

1.1 Mandate and Objectives

The services of Hudon Desbiens St-Germain Environnement inc. (HDS Environnement) were retained by Baffinland Iron Mines Corporation (BIM) to survey various physical, biological or chemical contaminants in accommodation facilities and offices complex of the Mary River and Milne Inlet sites, located in the Qikiqtani Region (Baffin Island; Nunavut).

This study was carried out at the request of M. Shawn Stevens, manager of Health, Safety, Environment and Security of BIM (Mine site). Measurements were taken in July and August 2020 when a representative of HDS Environnement was on site.

1.2 Scope and Approach

The scope of the study included the following:

- Mary River Mine site (MRM):
 - <u>Sailivik camp and MSC camp</u>: noise, whole body vibrations, mould spores and indoor air quality (IAQ) surveys;
 - <u>MSC offices</u>: illuminance and IAQ surveys;
- Milne Port site (MP):
 - <u>PSC camp and 380-person camp</u>: noise, whole body vibrations, mould spores and IAQ surveys;
 - <u>PSC offices</u>: illuminance and IAQ surveys.

The present report includes, but is not limited to, a brief description of the implemented strategy, sampling methodology, results, conclusions and relevant recommendations.

1.3 Study Limitations

The conclusions and recommendations included in this report are based upon professional opinions expressed within the context of the mandate given to HDS Environment by Baffinland Iron Mines. HDS Environment accepts no responsibility for any use that is made of this report in any other context or by any other party, unless being expressly informed prior to such use and having explicitly agreed to the use of this report by others.

2 SITES DESCRIPTIONS & OPERATING CONDITIONS

2.1 Sites descriptions

BIM operates two (2) sites 24/7/365 in the Qikiqtani Region: the Mary-River Mine site (MRM) and the Milne Inlet Port site (MP).

In MRM, the offices are located at the Mine Site Complex (MSC) while the accommodation facilities are at Sailiivik camp. Some surveys also took place in the accommodation facilities of MSC, during their decommissioning.

Three accommodations facilities are attached to the MP site: Port Site Complex (PSC), Port site Weather Haven (PWH) and a 380-person camp. In 2020, only PSC and the 380-person camp were opened due to the pandemic situation. In MP, the offices are located at the PSC.

This study was conducted in July and August 2020.

2.2 Conditions during surveys

Sailiivik camp, MSC and PSC, are composed of modular prefabricated structures; PWH and the 380-man camp are made of soft-wall structures. Rooms are standardised across each facility.

The office complexes, a combination of closed offices and desks in open spaces, are also composed of modular structures.

The indoor noise and whole-body vibrations measured in accommodation facilities include contributions from various indoor sources (HVAC systems, opening/closing doors, cleaning, etc.) as well as outdoor sources (idling vehicles, machinery operations, etc.).

Except for the decommissioning of the MSC camp, the various surveys in accommodations and offices were overall considered representative of regular operating, ventilation and occupancy conditions (please refer to section 4, *Methodology* for details).

3 GUIDELINE VALUES

3.1 Indoor noise levels

According to information collected over the course of the mandate, the Nunavut Impact Review Board (NIRB) defined a 75-dBA threshold for workers' average noise exposure during resting time. This limit is based on the 85-dBA exposure threshold established by the Mine Health and Safety Act R-125-95 for an 8-hr work shift (Part IX and Schedule 5).

Additional research allowed to pinpoint the World Health Organization (WHO) *Guidelines for Community Noise*¹ which recommends an 8-hr L_{Aeq}^2 of 30 dBA during night-time, inside a bedroom (continuous noises). This guideline is designed to minimize sleep disturbance for "*sensitive groups* [...] *including shift workers* [...] *and other individuals who have difficulty sleeping*".

Consequently, to take into account the NIRB requirements as well as the As Low As Reasonably Achievable (ALARA) safety principle, we will therefore consider in the present study a 30-dBA 8-hr L_{Aeq} comfort threshold and a 75-dBA 8-hr L_{Aeq} exposure limit (EL) to assess workers' exposure to indoor noise during resting time.

3.2 Whole-body vibrations

According to information collected over the course of the mandate, due to the lack of vibration exposure threshold in the Mine Health and Safety Act R-125-95, the NIRB refers to the daily exposure limits defined by the European Physical Agents Vibration Directive – 2002/44/EC for workers exposed to whole-body vibrations.

This directive defines an action limit (AL) of 0.5 m/s² and an EL of 1.15 m/s², both standardized to an 8-hr reference period, for workers exposed to whole-body vibrations.

Additional research allowed to pinpoint 5-part standard from the International Organization for Standardization (ISO) on human exposure to mechanical vibrations. In appendix C of part 1 of the standard³, it is stated that "*fifty percent of alert, fit persons can just detect a weighted vibration with a peak magnitude of 0.015 m/s*² [...] with a range of response [that] may extend from about 0.01 m/s² to 0.02 m/s² peak".

¹ *Guidelines for community noise*, World Health Organization, Geneva, Switzerland (1999).

² 8h-L_{Aeq} is the energy average equivalent level of A-weighted sound over eight (8) hours.

³ ISO 2631-1:1997 Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration – Part 1: General requirements

Baffinland

In part 2⁴ of the same standard, it is also stated that "experience showed in numerous countries that residents expressed complaints linked to vibrations in residential buildings when the magnitude of vibrations are slightly above the perception threshold defined in part 1. appendix C^{*}.⁵

Consequently, to take into account the NIRB requirements as well as the ALARA safety principle, we will therefore consider in the present study a 0.015 m/s² (peak exposure) comfort threshold, an 8-hr action limit (AL) of 0.5 m/s² and an 8-hr EL of 1.15 m/s² to assess workers' exposure to whole-body vibrations during resting time.

It should be noted that the AL should be considered as a threshold for increased vigilance in order to prevent reaching the EL.

3.3 Mould spores

There are no regulatory thresholds for mould spore levels. According to several reference guides published by institutions such as the IRSST⁶, « *comparison of species and concentrations of bioaerosols found indoors to those outdoors or at a reference location* » are key aspects to assess the fungal presence in a building.

Interpretation of fungal particulate concentrations (or mould spore levels) and identification of a potentially abnormal mould presence is based on the following criteria:

- fungal profile: moulds found indoor and moulds found at the reference location are significantly different;
- fungal charge: mould counts indoor are significantly higher than mould counts at the reference location, or ratios between mould counts are significantly different.

The significant indoor presence of specific mould species, generally recognised for their toxicity or for potentially increasing health risks, is also a key indicator (mould species such as, for example, *Stachybotrys chartarum*, *Aspergillus versicolor*, *Aspergillus fumigatus*, *Penicillium chrysogenum*, etc.).⁷

As stated by the IRSST, the interpretation of mould spore levels is complex and limited by the lack of exposure standard as well as the fact that a living material is being evaluated, with variable activity over time and meteorological conditions.

⁴ ISO 2631-2:2003 Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 2: Vibration in buildings (1 Hz to 80 Hz)

⁵ Free translation from the French version of ISO 2631-2:2003

⁶ Institut de recherche Robert Sauvé en Santé et Sécurité du travail (IRSST) *Bioaerosols in the Workplace: Evaluation, Control and Prevention Guide*. Technical guide T-24 November 2001.

⁷ Total mould spores sampling, as conducted in the present study, limits identification of moulds to genera and does not allow for identification down to species.

3.4 Illuminance

As per article 9.43 of the Nunavut Mine and Safety Act R-125-95, "the manager [of the Mine] shall ensure that, at all working places on the surface of a mine, suitable and adequate illumination is provided that meets the standards set out in the ANSI/IES Standard RP-7-1979, American National Standard Practice for Industrial Lighting".

Minimum illuminance levels for office areas are also defined in article 6.4 of the *Canadian Occupational Health and Safety Regulations* (COHSR) as well as in schedule I, part VI of the COHSR.

Based on a more recent version of the ANSI/IES standard RP-7-17 and on the current version of the COHSR, recommended and minimum illuminance targets applicable to office areas are as follow.

	ANSI/IES RP-7-17	COHSR		
Recommended target (Lux) ¹	Recommended target (Lux) ¹ Visual performance description		Task position or area	
40 - 200	Common social activity and large and/or high-contrast tasks Visual performance involves higher-level assessment of landscape, hardscape, architecture and people and can be work related	100	Service areas Frequently used stairways and corridors	
	Common, relatively small-scale, more cognitive or fast- performance visual tasks Visual performance is typically	300	Office work Conference and interview rooms, file storage area, switchboard or reception areas or other areas where ordinary visual tasks are performed	
300 - 750	daily life- and work-related, including reading and writing of hardcopies and electronic media consecutively and/or simultaneously	500	Desk Work Task positions at which business machines are operated or stenography, accounting, typing, filing, clerking, billing, continuous reading or writing or other difficult visual tasks are performed	
1000 - 2000	Small-scale, cognitive visual tasks Visual performance is work- or sport-related, close and distant fine inspection, very small detail, high-speed assessment and reaction.	1000	Desk Work Task positions at which cartography, designing, drafting, plan-reading or other very difficult visual tasks are performed	

Table 1. Illuminance levels (ANSI/IES and COHSR)

Note: ¹ Recommended illuminance targets for a group of observers where at least half are between 25 and 65 years old.

3.5 IAQ

Key IAQ parameters targeted in the present study are the temperature (T), relative humidity (RH), carbon dioxide (CO_2), and carbon monoxide (CO).

3.5.1 T and RH

Nunavut R-003-2016, art.74 stated that : [...] at an indoor work site, an employer shall provide and maintain thermal conditions [...] that (a) are appropriate to the nature of the work performed; (b) provide effective protection for the health and safety of workers; and (c) provide reasonable thermal comfort for workers.

Regarding thermal comfort, acceptable operating ranges recommended by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) to accommodate at least 80% of occupants are as follow (standard ASHRAE 55-2013):

- Summer (light clothing):
- Winter (warm clothing):
- RH around 30%: 24.5 to 28°C;
- RH around 60%: 23 to 25.5°C.
- RH around 60%: 20 to 24°C.

• RH around 30%: 20.5 to 25.5°C;

RH should also be kept at all times over 20% to avoid increased discomfort and drying of the mucus membranes and skin and under 60% to avoid condensation on cold surfaces and limit the growth of mould and fungi.

3.5.2 CO

As per article 11.4 of the Nunavut Mine and Safety Act R-125-95, occupational exposures to airborne contaminants will be compared to Threshold Limit Values (TLVs) listed in the current issue of the *Threshold Limit Values and Biological Exposure Indices Booklet* ("TLV Booklet") as published by the *American Conference of Governmental Industrial Hygienists* (ACGIH).

The TLV for CO is 25 ppm over an 8-hr period.

However, IAQ standards usually define lower thresholds than applicable TLVs. For example, the standard ASHRAE 62.1-2013, based on the National Ambient Air Quality Standards (NAAQS) form the Environmental Protection Agency (EPA) of the United States of America, itself established to provide public health protection, including protecting the health of "sensitive" populations such as asthmatics, children and the elderly, lists an 8-hr reference level of 9 ppm for CO.

Other guidelines, such as those published by the *Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail* (ANSES) from France and established to protect general population from adverse effects due to exposure to pollution by inhalation, are compiled in the table 2 below.

Exposure	Guidelines ¹			
duration	mg/m³	ррт		
8 hr	10	8,7		
1 hr	30	26,2		
30 min	60	52,4		
15 min	100	87,3		

Table 2. Guidelines for exposure to CO

Note: ¹ considering a conversion factor of 0,873 at 25°C (from mg/m³ to ppm).

Consequently, to take into account the Nunavut regulation and the ALARA safety principle, we will consider in the present study both a 25 ppm 8-hr TLV for regulatory compliance and an 8.7 ppm maximum threshold for an acceptable IAQ.

3.5.3 CO₂

As per article 11.4 of the Nunavut Mine and Safety Act R-125-95, and the TLV Booklet of the ACGIH, the TLV for CO_2 is 5000 ppm over an 8-hr period.

However, human activity produces varying levels of CO₂ and its indoors levels can be used as an indicator of ventilation system efficiency and IAQ. As stated by standard ASHRAE 62.1-2013, maintaining a "*steady-state carbon dioxide concentration no greater than 700 ppm above outdoor air levels will indicate that a substantial majority of visitors entering a space will be satisfied with respect to human bioeffluents (body odour*)". Other guidelines, also published by the ANSES, establish the following scale⁸ for indoors CO₂ levels.

IAQ level	Differential between indoor and outdoor CO ₂ levels		
« Excellent »	Diff. ≤ 400 ppm		
« Good »	400 ppm < diff. < 600 ppm		
« Average »	600 ppm < diff. < 1000 ppm		
« Low »	Diff. > 1000 ppm		

Table 3. IAQ qualitative scale (CO₂ levels)

Overall, when the differential between indoor and outdoor CO₂ levels is greater than 600 ppm ("Average" and "Low" IAQ level), it indicates that the ventilation system and the fresh air intake is insufficient.

⁸ IAQ classification based standard NF EN 13779, Ventilation in non-residential buildings – Performance requirements for ventilation and air conditioning systems [free translation].

4 METHODOLOGY

4.1 Sampling strategy

The sampling strategy was initially established by BIM representatives prior to the industrial hygiene campaign and adjusted on the field by the HDS representative based on availability of offices and facilities. The final sampling strategy is presented in table 1 below.

In facilities, monitoring instruments were set-up in different rooms targeted by BIM representatives. The rooms were unoccupied during sampling periods.

In offices, monitoring instruments were set-up in different offices and areas targeted by BIM representatives. Occupancy levels varied during sampling time (refer to *Results* section for details).

4.2 Indoor noise levels

Indoor noise levels were measured with Noise-Pro DLX, from Quest. The dosimeters were calibrated prior to sampling using a Quest Electronics QC-10 acoustic calibrator and the calibration drift was checked post-sampling with the same calibrator. The dosimeters and acoustic calibrator were calibrated to the manufacturer's specifications less than one (1) year before the field work (calibration certificates available in Appendix A).

The instruments were set-up near the head of the bed or on a bedside table, when available.

Sound levels were logged at regular intervals (continuous readings integrated with a Q3 bisection factor, no integration threshold and a SLOW response).

Average noise levels (L_{avg}) measured in the present study were considered representative of equivalent average noise levels time-weighted over an 8-hr period (8h-L_{Aeq}) and were thus directly compared to the comfort threshold and the 8-hr EL considered in the present study.

4.3 Whole-body vibrations

Whole-body vibrations monitoring was conducted using a HVM200 from Larson Davis, equipped with a seat pad triaxial accelerometer SEN027. Surveys were performed with a HVM200, and its seat pad, both rented by HDS Environnement. The calibration certificates of these instruments are presented in Appendix A.

The HVM200 was set on "Whole-body Mode" for proper frequency weighting and measurements were logged at 1-min intervals during sampling, unless stated otherwise.

Baffinland Iron Mines corp., Mary River Mine, Milne Port site (Nunavut)

Seat pads were positioned on the floor, approximately in the center of targeted rooms.

Average accelerations (A_{eq} or A_{rms}) measured during the present study were considered representative of equivalent average accelerations time-weighted on an 8-hr reference period and were thus directly compared to the 8-hr AL and the 8-hr EL considered in the present study.

4.4 Mould spores

Air sampling were conducted using a Zefon Bio-pump® Plus equipped with Air-o-Cell sampling cassettes. Sampling trains (pump with cassette) were mounted on tripods (sampling height of approximately 5'). When sampling inside, tripods were installed in the center of targeted rooms. When sampling outside for outdoor reference, tripods were installed near doors or windows that could contribute to the natural ventilation of the facilities.

Sampling trains were calibrated to 15 l/min prior to sampling with a dedicated rotameter, duly calibrated less than one (1) year before the sampling campaign. The calibration certificate is presented in Appendix A. Sampling duration was approximately five (5) minutes. Calibration drifts were measured after each sample using the same rotameter.

Quality assurance and quality control program (QA/QC program) included duplicate samples for each location as well as one (1) field blank per day. The sampling cassettes used for the field blanks were stored, transported, handled and analyzed as those used for sampling.

Mould spore concentrations measured in the present study were conducted with ventilating and operating conditions considered representative of regular conditions.

4.5 Illuminance

Light levels were monitored with a digital light meter (850007 light meter, Sper Scientific), duly calibrated less than one (1) year before the sampling campaign. The calibration certificate is presented in Appendix A.

The zero of the digital light meter was adjusted before each sampling campaign. The sensor was placed at the four (4) corners of the targeted workstation and each measurement lasted for approximately two (2) to three (3) minutes. Average illuminance levels compiled in the present report are arithmetic means of light levels measured for each targeted workstation.

Light levels measured in the present study were conducted with illuminance conditions considered representative of regular conditions (see details results for details about time of the day and meteorological conditions during sampling).

4.6 IAQ

IAQ parameters (T, HR, CO_2 and CO) were monitored with a direct-reading instrument (DRI) from TSI, model IAQCalc 7545, duly calibrated by the manufacturer less than one (1) year before the sampling campaign. The calibration certificate is available in Appendix A. The features of this instrument are as follows:

- T: from 0 to 60°C, with a resolution of 0.1°C and an accuracy of ± 0.5 °C;
- HR: from 5 to 95%, with a resolution of 0.1% and an accuracy of \pm 3% ;
- CO2: 0 to 5,000 ppm, with a resolution of 1 ppm and an accuracy of ± 3% or 50 ppm, whichever is greater;
- CO: 0 to 500 ppm, with a resolution of 0.1 ppm and an accuracy of ± 3% or 3 ppm, whichever is greater.

IAQ parameters were monitored in real time and average measurements were datalogged at regular intervals during sampling time.

During mould spores sampling, IAQ parameters were monitored for five (5) to ten (10) minutes at each sampling station.

Each IAQ survey in offices have been conducted at the end of the day shift (around middle afternoon), during normal activities. The sensor of the DRI was mounted on a tripod, or any other support (office partition, furniture, etc.), to take measurements at breathing zone level and it was positioned approximately at the center of the targeted area.

Readings were also taken outside, at locations considered representative of the fresh air intake of the ventilation systems of the targeted rooms, for reference purposes.

Based on data collected on site from BIM representatives, IAQ parameters monitored in the present study were considered representative of the regular ventilation and occupancy conditions expected in the targeted areas during summer.

TABLE 4

SAMPLING STRATEGY - Accommodations facilities and offices Noise, whole-body vibrations, mold spores, indoor air quality and illuminance levels Baffinland Iron Mines - Mary River Mine and Milne Port Sites (Nunavut)

Date	Location	Noise Night shift	Vibrations Night shift	Illuminance Day shift	Mold spores and IAQ <i>Day shift</i>	IAQ Day shift
Mary Riv	er Mine					
2020-07-23	Sailivik camp Room D2-12	-	-	-	1	-
2020-07-31	MSC camp ¹ Room AF-6	-	-	-	1	-
2020-07-31	MSC offices -	-	-	1	-	1
2020-08-01	MSC offices -	-	-	-	-	1
2020-08-03	Sailivik camp Room C2-04	1	1	_	-	_
Milne Po	rt					
2020-07-25	PSC camp Room BC-21	-	-	-	1	-
2020-07-25	PSC offices -	-	-	1	-	1
2020-07-26	380-person camp Room H-01	1	1	-	1	-
2020-07-28	PSC camp Room BC-21	-	-	-	1	-
2020-07-29	PSC camp Room BB-06	1	1	-	-	-

5 RESULTS

5.1 Indoor noise levels

The indoor noise levels collected in accommodation facilities in 2020 are compiled in table 5 below. The session reports are presented in Appendix B.

The notable facts are as follow:

all the indoor noise measurements taken in the accommodation facilities respected the 75-dBA exposure level considered by the NIRB.

Dosimeters were set on a dynamic sampling range of 70 dBA – 140 dBA for occupational noise measurements. Therefore, the 30-dBA comfort threshold could not be assessed (outside of sampling range).

TABLE 5

Results - Indoor noise levels in accommodation facilities Q3 2020

Q3 2020

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

Date	Location	Instrument	Sampling	duration	Leq ¹ (dBA)	Remarks	
Comfort th	Comfort threshold ² (dBA) 30						
Exposure I	₋evel ³ (dBA)				75		
Mary River	Mine Site						
2020-08-03	Sailivik Camp - Room C2-04	NXN030014	from 18 h 00	to 6 h 00	< 65	Regular conditions	
Milne Port	Milne Port						
2020-07-29	PSC - Room BB-06	NXN030014	from 18 h 00	to 6 h 00	< 65	Regular conditions	
2020-07-26	380 person camp - Room H-01	NXN030014	from 18 h 00	to 6 h 00	< 65	Regular conditions	

General remarks:

Measurements were taken with a dosimeter set-up with a Q3 bissection factor, no integration threshold, SLOW response time and a dynamic sampling range of 70 dBA - 140 dBA.

Measurements taken in vacant rooms.

Notes :

¹ Leq: equivalent noise level averaged over sampling time.

² Comfort threshold defined in the World Health Organization *Guidelines for Community Noise* and designed to minimize sleep disturbance

³ Exposure level considered by the Nunavut Impact Review Board (NIRB) for exposure to noise during resting time.

5.2 Whole-body vibrations

The vibration levels measured in accommodation facilities in 2020 are compiled in table 6 below. The session reports are presented in Appendix C.

The notable facts are as follow:

- all the whole-body vibration measurements taken in the accommodations respected the 8-hr AL, and thus the 8-hr EL, considered by the NIRB for exposure to whole-body vibrations during resting time (regular conditions during sampling time);
- the 0,015 m/s² comfort threshold (peak exposure) was exceeded at each sampling station:
 - Sailivik Camp Rooms C2-04: comfort threshold exceeded during 6% of sampling time;
 - PSC Room BB-06: comfort threshold exceeded during 6% of sampling time;
 - 380-person camp Room H-01: comfort threshold exceeded during 35% of sampling time.

TABLE 6

Results - Vibrations in accommodation facilities

Q3 2020

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

Date	Location	Samping duration	A _{eq} ¹ (m/s ²)	A _{peak} ² (m/s ²)	Remarks
Comfort th	reshold (m/s²) (peak) ³			0,015	
8-hr actior	ı limit (m/s²) ⁴		0,5		
8-hr expos	sure level (m/s²) ⁵		1,15	-	
Mary Rive	r Mine Site				
2020-08-03	Sailivik Camp - Room C2-04	from 17 h 02 to 6 h 05	0,003	0,022	Regular conditions Comfort threshold exceeded during ~ 6% of sampling time
Milne Port					
2020-07-29	PSC - Room BB06	from 16 h 10 to 7 h 06	0,003	0,024	Regular conditions Comfort threshold exceeded during ~ 6% of sampling time
2020-07-26	380-person camp - Room H-01	from 16 h 45 to 6 h 40	0,004	0,052	Regular conditions Comfort threshold exceeded during ~ 35% of sampling time

General remarks:

All samples are taken with Larson Davis HVM200 with triaxial accelerometer in removable elastomeric pad (Whole Body Vibration mode).

Notes :

 $^{1}A_{eq}$ or A_{rms} : the frequency-weighted, time-weighted acceleration sum over the sampling period.

² A_{peak}: the frequency-weighted, peak acceleration sum over the sampling period.

³ Comfort threshold defined by the 5-part standard ISO 2631 1:1997 (peak measurement)

⁴8-hr Action limit considered by the Nunavut Impact Review Board (NIRB) for exposure to whole-body vibrations during resting time.

⁵ 8-hr Exposure limit considered by the Nunavut Impact Review Board (NIRB) for exposure to whole-body vibrations during resting time.

5.3 Mould spores

The levels of mould spores measured in accommodation facilities in 2020 are compiled in tables 7 and 8 below (Mine site and Port site respectively). The corresponding certificate of analysis is presented in Appendix D.

The notable facts are as follow:

Mine site

- levels of mould spores measured at the Sailiivik camp (room D2-12) overall respect the criteria for fungal profile and fungal charge considered in the present study;
- levels of mould spores measured at the MSC camp exceeded the fungal charge criteria for the spores of Aspergillus / Penicillium sp. but this is probably due to the decommissioning of the facilities during sampling (no occupants).

Port site

levels of mould spores measured at the PSC camp (room BC-21) and at the 380-person camp (room H-01) both respected overall the criteria for fungal profile and fungal charge considered in the present study.

TABLE 7 Results - Mould spores in accommodation facilities, Mine site Q3 2020

ENVIRONNEMENT

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

		Sailiivik camp	Sailiivik reference (outdoor)	MSC camp	MSC reference (outdoor)			
Sample ID & sampling date		3100-0313 and 3100-0304 2020-07-23	3100-0323 and 3100-0316 2020-07-23	3100-3934 and 3100-0318 2020-07-31	3100-0322 and 3100-3925 2020-07-31			
Loc	ation & observations	Indoor samples taken at the center of room D2-12	Outdoor sample taken near the exit door of H wing	Indoor samples taken at the center of the room AF-6 (facility being decommissioned)	Outdoor sample taken near the main entrance			
	Total spores (spores/m ³)							
	Ascospores	-	87	40	100			
	Aspergillus/Penicillium sp.	7	-	114	7			
lts	Basidiospores	40	227	13	34			
nse	Cladosporium sp.	-	7	-	7			
Å	Unidentified spores and	nidentified spores and other related particulates (spores/m ³)						
	Hyphal fragments	7	7	-	-			
_	Total ¹	53	327	167	147			
	Background particulates	3	3	3	3			

Notes:

- genus of mould not identified in the sample.

sp.: species. moulds are identified down to genus.

¹ All results are rounded. Totals may thus not equal to the sum of the individual results.

General remarks : Reported concentrations correspond to the arithmetic mean of the duplicate samples. Spores or other elements were not detected in field blanks. Methods IRSST MA-367-m and ASTM D 7391-09-m | Laboratory member of the AIHA EMPAT program (ID #193773)

0 : no background particulates | 1: slight amount | 2: moderate amount | 3: large amount | 4: very large amount. Background particulates According to the analytical laboratory, very large amounts of background particulates might hide spores and other elements. Thefore, results with background levels of 4 have to be regarded as underestimates.

TABLE 8Results - Mould spores in accommodation facilities, Milne Port siteQ3 2020

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

		PSC camp	PSC reference	PSC camp	PSC reference	380-person camp	380-person camp	
Sample ID & sampling date		3100-0319 and 3100-0305 2020-07-25	3100-0296 and 3100-0312 2020-07-25	3100-0294 and 3100-0282 2020-07-28	3100-0309 and 3100-0307 2020-07-28	3100-0310 and 3100-314 2020-07-26	3100-0283 and 3100-0311 2020-07-26	
Loc	ation & observations	Indoor samples taken at the center of room BC-21. Window 1/4 open	Outdoor sample taken near the main entrance.	Indoor samples taken at the center of room BC-21. Window closed	Outdoor sample taken near the main entrance.	Indoor samples taken at the center of room H-01	Outdoor sample taken near the main entrance.	
	Total spores (spores/m ³)	•		-		•		
	Ascospores	-	27	14	20	7	7	
	Aspergillus/Penicillium sp.	7	-	-	7	14	-	
s	Basidiospores	34	127	27	173	20	34	
sult	Cladosporium sp.	7	-	7	20	13	-	
Re	Unidentified spores and other related particulates (spores/m ³)							
	Hyphal fragments	-	-	-	7	7	-	
	Total ¹	47	154	47	226	47	40	
	Background particulates	3	3	2	3	3	4	

Notes:

- genus of mould not identified in the sample.

sp.: species. moulds are identified down to genus.

¹ All results are rounded. Totals may thus not equal to the sum of the individual results.

 General remarks :
 Reported concentrations correspond to the arithmetic mean of the duplicate samples.

 Spores or other elements were not detected in field blanks.
 Methods IRSST MA-367-m and ASTM D 7391-09-m | Laboratory member of the AIHA EMPAT program (ID

Background particulates 0 : no background particulates | 1: slight amount | 2: moderate amount | 3: large amount | 4: very large amount. According to the analytical laboratory, very large amounts of background particulates might hide spores and other elements. Thefore, results with background levels of 4 have to be regarded as underestimates.

5.4 Illuminance

The results of the illuminance surveys at the MSC and PSC offices are compiled in table 9 below.

Based on the applicable threshold levels considered in the present study, the notable facts are as follow:

Mine site

- nine (9) out of fifteen (15) measurements failed to meet the 500-lux minimum illuminance level established by the COHSR:
 - BIM offices, three desks in open space and H&S administrator's desk;
 - Mine op, two offices and desk in open space;
 - Human resources, one office and front desk.
- out the nine (9) measurements listed above, four (4) also failed to meet the 300-lux minimum illuminance target defined by the ANSI/ES RP-7-17 standard:
 - BIM offices, H&S administrator's desk;
 - Mine op, two offices;
 - Human resources, one office.

Port site

- one (1) out of nine (9) measurements failed to meet the 500-lux minimum illuminance level established by the COHSR:
 - desk next to IT supervisor;
- the nine (9) measurements taken during the survey complied with the applicable 300-750 lux illuminance target defined by the ANSI/ES RP-7-17 standard.

TABLE 9 **Results - Illuminance levels in offices** Q3 2020

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

Locatio	on - Time	Average illuminance ^a (lux)		Remarks
	Limit thresholds (lux)	ANSI/IES RP-7-17 ^b	COHSR [°]	
Reception area	as, conference rooms, etc.	300 - 750	300	ANSI/IES RP-7-17 lists recommended illuminance targets.
	Desk work, common tasks Desk work, verv fine details	1000 - 2000	<u> </u>	COHSR lists minimum illumnance levels.
PSC - 2020-07-25	;			
Environmental technician desk		569	}	Regular lighthing conditions (day shift).
Surveyor desk		533	}	Regular lighthing conditions (day shift).
IT technician desk	ļ	741		Regular lighthing conditions (day shift).
IT supervisor desk	ļ	510)	Regular lighthing conditions (day shift).
Desk next to IT supervisor	13:40 to 14:20 sunny	413	}	Regular lighthing conditions (day shift).
Desk trainee corner	j l	595	;	Regular lighthing conditions (day shift).
Desk 1 Site services	j l	659) 	Regular lighthing conditions (day shift).
Desk 2 Site services	j l	940)	Regular lighthing conditions (day shift).
WI desk office #4		1 142		Regular lighthing conditions (day shift).
MSC - 2020-07-31	1			
IH equipment storage		350)	Regular lighthing conditions (night shift).
Inuit success team	ļ	399)	Regular lighthing conditions (night shift).
BIM offices Desk 1 in open space		438	3	Regular lighthing conditions (night shift).
BIM offices Desk 2 in open space	ļ	308	3	Regular lighthing conditions (night shift).
BIM offices Desk 3 in open space	j l	340)	Regular lighthing conditions (night shift).
BIM offices H&S administrator desk	j l	250)	Regular lighthing conditions (night shift).
BIM offices office 1		536	3	Regular lighthing conditions (night shift).
BIM offices office 2	18:30 to 19:00 cloudy	530)	Regular lighthing conditions (night shift).
BIM offices office 3	j l	850)	Regular lighthing conditions (night shift).
BIM offices office 4	j l	550		Regular lighthing conditions (night shift).
Mine Op office 1		289)	Regular lighthing conditions (night shift).
Mine Op office 2		162		Regular lighthing conditions (night shift).
Mine Op Desk 1 in open space		489)	Regular lighthing conditions (night shift).
Human resources front desk		325	;	Regular lighthing conditions (night shift).
Human resources office 1		220)	Regular lighthing conditions (night shift).

Notes :

^a Average illuminance measured at targeted workstation (arithmetic mean)

⁶ Recommended illuminance targets for a group of observers where at least half are between 25 and 65 years old.
 ⁶ Minimum illuminance levels for targeted tasks.

5.5 IAQ

The results of the IAQ surveys at the MSC and PSC offices are compiled in tables 10 and 11 below (offices and accommodation facilities respectively).

Based on the reference levels considered in the present study, the notable facts are as follow:

Offices

- temperature and relative humidity average readings in offices comply overall with recommended target ranges for workers' thermal comfort;
- CO levels in offices comply with regulatory and recommended thresholds;
- CO₂ levels in offices comply with regulatory threshold;
- differentials between indoor and outdoor CO₂ levels correspond to "Excellent" or "Good" IAQ levels **except** for the front desk of Human Resources in MSC where CO₂ differentials indicate insufficient air changes per hour.

Accommodations

- temperature and relative humidity average readings in accommodations comply overall with recommended target ranges for occupants' thermal comfort **except** in MSC accommodations, room AF-6, where the temperature is too low but this is due the decommissioning of the facilities during the survey (no occupants);
- CO levels in accommodations comply with regulatory and recommended thresholds;
- CO₂ levels in accommodations comply with regulatory threshold;
- differentials between indoor and outdoor CO₂ levels correspond to "Excellent" or "Good" IAQ levels.

TABLE 10Results - Indoor air quality (IAQ) in offices(T° - RH% - CO2- CO) - Q3 2020

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

Loca	tion - Time	T ^b (°C)	RH ^c (%)	CO ₂ ^d (ppm)	CO ^e	Remarks
l imit thracholda	Nunavut R-003-2016	-	-	5000	25	Nunavut R-003-2016, art.74: [] at an indoor work site, an employer shall provide and maintain thermal conditions [] that (a) are appropriate to the nature of the work performed; (b) provide effective protection for the health and safety of workers;
	Recommended (comfort and good IAQ)	20,5 to 25,5 ℃ if RH ~ 30% 20,0 to 24,0 ℃ if RH ~ 60%	30-50% & < 60%	< outdoor + 600 ppm	< 8,7 ppm over 8h	and (c) provide reasonable thermal comfort for workers. CO2 and CO levels listed in the Nunavut R-003-2016 equal the 8hr-TWAs listed in the ACGIH TLV Booklet 2020.
MSC - 2020-02	7-31					
Offices main open space	16:30 to 18:45	24,9	34,3	642	0,3	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
HR offices front desk	18:45 to 18:50	20,5	42,9	619	0,3	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Mine op offices	18:50 to 18:55	22,6	37,9	657	0,3	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Training offices	19:05 to 19:10	19,5	50,4	598	0	Regular operating conditions of the ventilation system, no occupancy during the work shift .
Outdoor reference	15:20 to 15:30 19:00 to 19:05	14,5	48,1	353	0,3	Regular operating conditions around camp.
MSC - 2020-08	8-01					
Offices main open space	14:20 to 18:10	25,5	33,3	612	0,1	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Offices main corridor	18:22 to 18:25	19,8	51,1	770	0	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Mine op offices	18:25 to 18:28	21,4	43,3	607	0,2	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
HR offices front desk	18:28 to 18:31	22,2	44,9	1 001	0,4	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Training offices	18:31 to 18:35	22,8	41,1	776	0,3	Regular operating conditions of the ventilation system, no occupancy during the work shift.
Offices main open space S-W corner	18:35 to 18:38	23,8	36,5	586	0,3	Regular operating conditions of the ventilation system, regular occupancy during the work shift. Window ajar
Offices main open space N-W corner	18:40 to 18:43	24,5	35,4	734	0,4	Regular operating conditions of the ventilation system, regular occupancy during the work shift. Window ajar
Offices main open space N-E corner	18:43 to 18:46	24,5	33,8	558	0,3	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Offices main open space S-E corner	18:46 to 18:50	24,3	34,4	591	0,4	Regular operating conditions of the ventilation system, regular occupancy during the work shift. Window ajar
Outdoor reference	14:10 to 14:20 18:18 to 18:22	16,2	46,9	375	0	Regular operating conditions around camp.
PSC - 2020-07	7-25					
Offices main open space	15:05 to 19:10	24,7	36,6	432	0,1	Regular operating conditions of the ventilation system, regular occupancy during the work shift.
Outdoor reference	14:50 to 15:05 19:25 to 19:35	22,2	38,8	388	0,3	Regular operating conditions around camp.

Notes :

^a Nunavut consolidation of occupational health and safety regulations, R-003-2016 (2016-06-19). Nunavut regulation specific to mining sites (Nunavut R-125-95) does not regulate temprature, relative humidity, carbon dioxide or carbon monoxide in offices or accomodations.

^b Temperature. Arithmetic mean calculated over sampling time. References are based on thermal confort.

° Relative humidity. Arithmetic mean calculated over sampling time. References are based on thermal confort and limited fungal growth.

^d Carbon dioxide. Arithmetic mean calculated over sampling time. Reference threshold is used to assess ventilation efficiency (sufficient fresh air intake and air changes per hour).

^e Carbon monoxide. Arithmetic mean calculated over sampling time. Reference threshold based on recommended exposure limit for a good IAQ.

TABLE 11 Results - Indoor ar quality (IAQ) in accomodation facilities (T° - RH% - CO₂- CO) - Q3 2020

Baffinland Iron Mines - Mary River and Milne Port Sites (Nunavut)

Location - Time		T ^b (°C)	RH ^c (%)	CO ₂ ^d (ppm)	CO ^e (ppm)	Rer
t Sandt (burn ole oledo	Nunavut R-003-2016	-	-	5000	25	Nunavut R-003-2016, art.74: [] at an indoor work site, an e (a) are appropriate to the nature of the work performed; (b) p
Limit thresholds	Recommended (comfort and good IAQ)	20,5 to 25,5 °C if RH ~ 30% 20,0 to 24,0 °C if RH ~ 60%	30-50% & < 60%	< outdoor + 600 ppm	< 8,7 ppm over 8h	workers; and (c) provide reasonable thermal comfort for wor CO2 and CO levels listed in the Nunavut R-003-2016 equal
Sailiivik - 2020)-07-23					
Room D2-12	7:25 to 7:35	23,7	42,7	612	0,5	Regular operating conditions of the ventilation system.
Outdoor reference	5:50 to 6:10	14,2	59,7	386	0	Regular operating conditions around camp.
PSC - 2020-07	-25					
Room BC-21	9:23 to 9:35	22,6	42,8	662	0,3	Regular operating conditions of the ventilation system. Wind
Outdoor reference	10:23 to 10:37	20,3	47,6	393	0,1	Regular operating conditions around camp.
380-person ca	mp - 2020-07-26					
Room H01	16:39 to 16:51	26,7	43,5	684	0,5	Regular operating conditions of the ventilation system.
Outdoor reference	17:00 to 17:10	21,9	41,4	388	0,2	Regular operating conditions around camp.
PSC - 2020-07	-28					
Room BC-21	12:35 to 12:46	19,1	53,4	656	0,1	Regular operating conditions of the ventilation system.
Outdoor reference	12:23 to 12:35	12,8	66,5	394	0	Regular operating conditions around camp.
MSC - 2020-07	7-31					
Room AF-6	16:13 to 16:25	16,4	46,8	542	0,2	Ventilation system in operation. Facility being decommiss
Outdoor reference	15:51 to 16:03	13,4	58,2	383	0	Regular operating conditions around camp.

Notes :

^a Nunavut consolidation of occupational health and safety regulations, R-003-2016 (2016-06-19). Nunavut regulation specific to mining sites (Nunavut R-125-95) does not regulate temprature, relative humidity, carbon dioxide or carbon monoxide in offices or accomodations.

^b Temperature. Arithmetic mean calculated over sampling time. References are based on thermal confort.

^c Relative humidity. Arithmetic mean calculated over sampling time. References are based on thermal confort and limited fungal growth.

^d Carbon dioxide. Arithmetic mean calculated over sampling time. Reference threshold is used to assess ventilation efficiency (sufficient fresh air intake and air changes per hour).

^e Carbon monoxide. Arithmetic mean calculated over sampling time. Reference threshold based on recommended exposure limit for a good IAQ.

narks

mployer shall provide and maintain thermal conditions [] that rovide effective protection for the health and safety of cars
he 8hr-TWAs listed in the ACGIH TLV Booklet 2020.
low ajar.
oned.

6 CONCLUSIONS AND RECOMMENDATIONS

The services of HDS Environnement were retained by BIM to conduct various studies regarding physical, biological or chemical contaminants in accommodation facilities and offices complex of the Mary River and Milne Inlet sites, located in the Qikiqtani Region (Baffin Island; Nunavut).

The scope of the study included noise, whole-body vibrations, mould spore, indoor air quality (IAQ) and illuminance surveys in various offices and accommodations.

The surveys took place between July 23rd, 2020 and August 3rd, 2020 (see table 4 for detailed sampling strategy). Overall, based on data collected on site, survey results were considered representative of regular operating, ventilation and occupancy conditions expected in summer, except for the MSC accommodation facilities which were being decommissioned during the surveys (no occupants).

The conclusions and recommendations based on data collected during the present study are listed below.

6.1 Indoor noise levels

All the indoor noise measurements taken in the accommodations respected the 75-dBA exposure limit considered by the Nunavut Impact Review Board (NIRB) for exposure to noise during rest time.

Based on elements above, HDS Environnement recommends:

- further documenting indoor noise levels in the accommodation facilities, especially during peak activity;
- identifying stationary sources of constant noise above 35 dBA in accommodation facilities.

6.2 Whole-body vibrations

All the whole-body vibrations measurements taken in the accommodations respected both the 8-hr action limit and the 8-hr exposure limit considered by the NIRB for exposure to whole-body vibrations during rest time (night shifts).

The comfort threshold of 0.015 m/s², established according to the ISO 2631 1:1997 standard, was exceeded during approximately 6% of the sampling time for Sailivik and PSC accommodations and approximately 35% of sampling time for the 380-man camp (night shifts).

Baffinland Iron Mines corp., Mary River Mine, Milne Port site (Nunavut)

Based on elements above, HDS Environnement recommends :

- further documenting whole-body vibration levels with a HVM200 in the accommodation facilities, especially during peak activity;
- identifying stationary sources of whole-body vibrations above 0.015 m/s² in accommodation facilities.

6.3 Mould spores

All the mould spore surveys taken in the accommodations respected overall the criteria for fungal profile and fungal charge considered in the present study (no evidence of abnormal fungal presence), **except** for the sample taken in MSC accommodations but this is probably due to the decommissioning of the facilities during sampling (no occupants).

Based on elements above, HDS Environnement recommends:

- further documenting mould spore levels in the accommodation facilities;
- regular visual inspection of accommodation facilities to quickly identifying and abate potential abnormal fungal growth that may appear.

6.4 Illuminance

Approximately 60% of the illuminance levels measured in the MSC offices failed to meet the 500-lux minimum illuminance level established by the COHSR. Approximately half of them also failed to meet the illuminance targets recommended by the ANSI/ES Rp-7-17 standard considered by Nunavut regulation (see the *Results* section for details).

Approximately 10% of the illuminance levels measured in the PSC facility failed to meet the 500-lux minimum illuminance level established by the COHSR, but all of them complied with the illuminance targets recommended by the ANSI/ES Rp-7-17 standard considered by Nunavut regulation (see the *Results* section for details).

Based on elements above, HDS Environnement recommends:

- increasing illuminance levels in MSC offices above 500 lux (open space and H&S administrator desk in BIM offices, closed offices and open space in Mine Op offices, Human Resources front desk, etc.);
- further documenting illuminance levels in facilities, especially during winter.

6.5 IAQ

IAQ surveys in offices comply overall with thermal comfort recommendations and show "Excellent" or "Good" IAQ levels, **except** for the front desk of the human resources in MSC where CO₂ differentials indicate insufficient air changes per hour.

IAQ surveys in accommodations show "Excellent" or "Good" IAQ levels and comply overall with thermal comfort recommendations, **except** in MSC accommodations where the temperature is too low but this is due the decommissioning of the facilities during the survey (no occupants).

Based on elements above, HDS Environnement recommends:

- Increasing air changes per hour in the human resources front office of MSC offices;
- further documenting IAQ in the accommodation facilities and offices, especially during winter.

REFERENCES

- Mine Health and Safety Act (mine health and safety regulations) R-125-95.
- Safety Act (occupational health and safety regulations) R-003-2016;
- Canada Occupational Health and Safety Regulations, SOR/86-304
- American Conference of Governmental Industrial Hygienists, TLVs and BEIs booklet, 2020 edition.
- American Society of Heating, Refrigerating and Air-conditioning Engineers, ASHRAE 62.1-2013 Ventilation for acceptable indoor air quality.
- American Society of Heating, Refrigerating and Air-conditioning Engineers, ASHRAE 55-2013Thermal Environmental Conditions for Human Occupancy.
- World Health Organization, *Guidelines for community noise*, 1999.
- ISO 2631 1:1997 Mechanical vibration and shock Evaluation of human exposure to whole-body vibration Part 1: General requirements.
- ISO 2631-2:2003 Mechanical vibration and shock Evaluation of human exposure to whole-body vibration Part 2: Vibration in buildings (1 Hz to 80 Hz).
- IRSST, technical guide T-24, Bioaerosols in the workplace: evaluation, control and prevention guide, November 2001.
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail, Valeurs guides de qualité d'air intérieur, le monoxyde de carbone, 2007.
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail, Concentrations de CO₂ dans l'air intérieur et effets sur la santé, Avis de l'ANSES, Rapport d'expertise collective, juillet 2013.
- United States Environmental Protection Agency (US EPA). Mold remediation in schools and commercial buildings (2008a).
- United States Environmental Protection Agency (US EPA). A brief guide to mold moisture, and your home (2008b).
- United States Environmental Protection Agency (US EPA). National Ambient Air Quality Standards (NAAQS).
- Illuminating Engineering Society, ANIS/IES RP-7-17, Recommended Practice for lighting industrial facilities.

APPENDIX A

Calibration certificates

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 www.modalshop.com

Sensor Information Model Number: SEN027 Serial Number: P228957 Manufacturer: Larson Davis ID Number:		Calibration Data Sensitivity @ 100 Hz: Phase @ 100 Hz: Test Level:		97.38 9.930 -0.75 10.00	mV/g mV/m/s² deg. g	Transducer S Amp. Range: Resolution: Resonant Freq: Temp. Range:	Specification ± 10 0.0002 ≥ 27000 -10 to 50	l s g Hz ℃
Description						A	14 to 122	۴
Description:	ICP® Acceler	ometer				AXIS:	Z - Axis	
	Deviation (0()		Phase H	lesponse				
Freq. (Hz)	Deviation (%)	Phase (deg)	10					
5	1.7758	0.2587	• •					
10	1.4806	-0.3637	eg.					
30	0.5669	-0.5911	e 0					
50	0.3101	-0.6163	ser -2					
100	0.0000	-0.7524	Ē					
159	-0.3295	-0.7646	-10 +					
160	-0.3270	-0.7669	1		10 Erog	100 uonov (Hz)		1000
200	-0.5559	-0.0041	Amplitu	da Baananaa	Freq	uency (nz)		
300	-0.8750	-1.0776	Ampiltu	de nesponse				
400	-0.6906	-0.9646	10					
500	-0.0020	-1.1030						
700	-0.0022	-1.2440	6) u (6					
700	-0.7790	-1.3840	atio					
900	-0.0000	-1.5194	-5 -					
1000	-0.3273	-1.8120	-10					
1000	-0.0001	-1.0120	1		10	100		1000
					Freq	uency (Hz)		
			Notes					
			Results re This certif	elate only to the ite ficate may not be	ems calibrated. reproduced exc	ept in full, without written	permision.	
Customer TMS Rental	<u>.</u>		Method: E This calib Proficienc	Back-to-Back Com ration was perforn by in calibration tra	parison Calibra ned with TMS 9 ceable to PTB	ation per ISO 16063 Part 2 0155 Calibration Workstat (17014/17004) and NIST	21 ion 2 version 6 (683/287323).	.0.0

Back-to-Back Comparison Calibration per ISO 16063-21

Procedure Used: PRD-P220

Measurement uncertainty (95% confidence level with coverage factor 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; ± 1.7%, 10-99 Hz; ± 1.2%, 100 Hz; ± 0.75%, 101-920 Hz; ± 1.0%, 921-5000 Hz; ± 1.4%, 5001-10,000 Hz; ± 1.9%, 10,001-15,000 Hz; ± 2.2%, 15,001-20,000 Hz; ± 2.8%.

Unit Condition

As Found: In Tolerance As Left: In Tolerance

Equipment Used

Description	Manufacturer	Model	Serial	Due Date
Data Aquisition Card	NI	PCI-4461	1A9CBC1	12/12/2019
Reference Std	PCB	080A200	175127	9/26/2020
Air Bearing Shaker	PCB	396C10	712	n/a
Ref Std Conditioner	PCB	442A102	261	9/26/2020
SUT Signal Conditioner	PCB	443B101	450	6/10/2020
Power Amplifier	TMS	2100E21-C	50097	n/a

3149 E. Kemper Rd Cincinnati, OH 45241 **User Notes**

Lab Conditions

Temperature:	77 (25)	°F (℃)
Humidity:	29	%

Cal Date: 19-Nov-19 Due Date:

Approval Information

Cal ID: 41971 Calibration Lab

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 www.modalshop.com

> g g Ηz °C

> > °F

10000

10000

6.0.0

						vv	ww.mouaishop.e	λ
Sensor Infor	mation	Cali	bration Data			Transducer S	specifications	3
Model Number:	SEN041F	Sens	itivity @ 100 Hz:	10.52	mV/g	Amp. Range:	± 500	
Serial Number:	P105716			1.072	mV/m/s²	Resolution:	0.008	
Manufacturer:	Larson Davis	Phas	e @ 100 Hz:	-0.16	deg.	Resonant Freq:	≥ 55000	
ID Number:	73287	Test	Level:	10.00	g	Temp. Range:	-54 to 121	
							-65 to 250	
Description:	ICP® Acceler	ometer				Axis:	X - Axis	
Data Table			Phase Resp	onse				
Freq. (Hz)	Deviation (%)	Phase (deg)	15					
5	-0.7517	3.5496	10					
6	-0.6782	3.0842	(ib 5					
7	-0.7040	2.4301	(qe					
8	-0.3013	2.3843	es -5					
9	-0.3772	1.9575	u -10					
10	-0.3218	1.7013	-15					
30	-0.1717	0.5261	1	10	100	1000) 1	1(
50	-0.0630	0.2335			Frequency (I	Hz)		
100	0.0000	-0.1575	Amplitude F	Response				
300	-0.0363	-1.0319	10					Т
500	-0.0214	-1.5928						
1000	0.0380	-3.3527	(%)					T
2000	-0.0490	-6.5959	. 0					+
3000	-0.4048	-10.1026	viat					
4000	-1.3918	-13.6038	De					
			-10 +	10	100	1000		1
			·	10	Frequency (Hz)	· · ·	
			Natao			,		
			Notes Bogulta relata	anly to the item	a colibrated			
			This certificate	e may not be rer	oroduced except in fu	II without written	permision	
			Method: Back	-to-Back Compa	arison Calibration per	ISO 16063 Part 2	21	
Customer			This calibratio	n was performe	d with TMS 9155 Cali	ibration Workstati	on 2 version 6 (ו
TMS Rental			Proficiency in	calibration trace	able to PTB (17014/	17004) and NIST	(683/287323)	
3149 E. Kem	per Rd		Back-to-Back	Comparison Ca	libration per ISO 160	63-21	().	
- · · · · · · · · · · · · · · · · · · ·								

Procedure Used: PRD-P220

Measurement uncertainty (95% confidence level with coverage factor 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; ± 1.7%, 10-99 Hz; ± 1.2%, 100 Hz; ± 0.75%, 101-920 Hz; ± 1.0%, 921-5000 Hz; ± 1.4%, 5001-10,000 Hz; ± 1.9%, 10,001-15,000 Hz; ± 2.2%, 15,001-20,000 Hz; ± 2.8%.

Unit Condition

As Found: In Tolerance As Left: In Tolerance

Equipment Used

Description	Manufacturer	Model	Serial	Due Date
Data Aquisition Card	NI	PCI-4461	1D22DFB	10/25/2020
Reference Std	PCB	080A200	175127	9/26/2020
Air Bearing Shaker	PCB	396C10	712	n/a
Ref Std Conditioner	PCB	442A102	261	9/26/2020
SUT Signal Conditioner	PCB	443B101	450	6/10/2020
Power Amplifier	TMS	2100E21-C	50097	n/a

Cincinnati, OH 45241 **User Notes**

Lab Conditions

Temperature:	71 (21)	°F (℃)
Humidity:	31	%

Cal Date: 17-Dec-19 Due Date:

Approval Information

Cal ID: 42274

2649.01 Calibration Lab

ACCREDITED

ISO 8041:2005

ANSI S2.70

Certificate Number 2019014164 Customer: The Modal Shop 3149 East Kemper Road Cincinnati, OH 45241, United States

Model Number	Number HVM200 Number 0001526		Procedure Number	D0001.8391				
Serial Number			Technician	Eric Olson				
Test Results	Pass		Calibration Date	20 No	v 2019			
Initial Condition		EIVED same as shinned	Calibration Due					
milial Condition	AS NECENED same as simpled		Temperature	23.88	°C	± 0.01 °C		
Description	Larson Davis Model HVM200		Humidity	50	%RH	± 0.5 %RH		
			Static Pressure	84.93	kPa	± 0.03 kPa		
Evaluation Method		Tested electrically using ADSIT.99 test fixture. Data reported in m/s ² with equivalent sensor sensivity of 1 mV/m/s ² .						
Compliance Standards Compliant to Manufa		Compliant to Manufacturer Speci	fications and the following stand	lards:				

IEC 61260:2014

ANSI S1.11

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a **‡** in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

5	Standards Used	l in the second	
Description	Cal Date	Cal Due	Cal Standard
Hart Scientific 2626-S Humidity/Temperature Sensor	07/18/2019	07/18/2020	006946
SRS DS360 Ultra Low Distortion Generator	03/18/2019	03/18/2020	007174

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

11/21/2019 11:48:08AM

Electrical signal test of frequency weighting performed according to ISO 8041:2005 13.10.3

Frequency [Hz]	Test Result [m/s ²]	Error [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result	
0.40	0.6966	-1.00	-21	26	1.90	Pass	
1.00	0.9931	0.57	-11	12	1.90	Pass	
10.00	0.9965	-0.35	-11	12	1.90	Pass	
79.43	0.9995	-0.05	-11	12	1.90	Pass	
501.19	0.9875	-0.02	-11	12	1.90	Pass	
1,258.90	0.7009	-0.87	-21	26	1.90	Pass	
		E-	d of moon wom out you				

-- End of measurement results--

Y-Axis, Fb-weighting

Electrical signal test of frequency weighting performed according to ISO 8041:2005 13.10.3

Frequency [Hz]	Test Result [m/s ²]	Error [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result	
0.40	0.6967	-1.00	-21	26	1.90	Pass	
1.00	0.9931	0.58	-11	12	1.90	Pass	
10.00	0.9965	-0.35	-11	12	1.90	Pass	
79.43	0.9995	-0.05	-11	12	1.90	Pass	
501.19	0.9875	-0.02	-11	12	1.90	Pass	
1,258.90	0.7012	-0.83	-21	26	1.90	Pass	
		Fn	d of mageurament rai	sulte			

-- End of measurement results-

Z-Axis, Fb-weighting

Electrical signal test of frequency weighting performed according to ISO 8041:2005 13.10.3

Frequency [Hz]	Test Result [m/s ²]	Error [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result	
0.40	0.6967	-1.00	-21	26	1.90	Pass	
1.00	0.9931	0.58	-11	12	1.90	Pass	
10.00	0.9966	-0.34	-11	12	1.90	Pass	
79.43	0.9995	-0.05	-11	12	1.90	Pass	
501.19	0.9875	-0.02	-11	12	1.90	Pass	
1,258.90	0.7011	-0.84	-21	26	1.90	Pass	
		17					

-- End of measurement results--

X-Axis Log Linearity at 12.59 Hz

Broadband level linearity with Wh-weighting

Result	Expanded Uncertainty [%]	Upper limit [%]	Lower limit [%]	Error [%]	Measured [m/s ²]	Level [m/s ²]
Pass	1.90	6.00	-6.00	-0.22	0.0837	0.0839
Pass	2.80	6.00	-6.00	-2.75	0.0915	0.0941
Pass	2.21	6.00	-6.00	0.20	0.1494	0.1491
Pass	1.90	6.00	-6.00	-0.61	0.4687	0.4716
Pass	1.90	6.00	-6.00	-0.29	4.7026	4.7161
Pass	1.90	6.00	-6.00	-0.30	47.0216	47.1611
Pass	1.90	6.00	-6.00	-0.58	468.8909	471.6112
Pass	1.90	6.00	-6.00	-0.58	4,179.0051	4,203.2395
		ults	d of measurement res	Enc		

Y-Axis Log Linearity at 12.59 Hz

Broadband level linearity with Wh-weighting

E	Result	Expanded Uncertainty [%]	Upper limit [%]	Lower limit [%]	Error [%]	Measured [m/s ²]	Level [m/s ²]
\$	Pass	1.90	6.00	-6.00	2.58	0.0860	0.0839
3	Pass	2.80	6.00	-6.00	0.53	0.0946	0.0941
;	Pass	2.21	6.00	-6.00	-0.68	0.1481	0.1491
\$	Pass	1.90	6.00	-6.00	-0.56	0.4690	0.4716
\$	Pass	1.90	6.00	-6.00	-0.34	4.6998	4.7161
3	Pass	1.90	6.00	-6.00	-0.31	47.0172	47.1611
3	Pass	1.90	6.00	-6.00	-0.58	468.8863	471.6108
3	Pass	1.90	6.00	-6.00	-0.58	4,178.9914	4,203.2356
3	Pass	1.90	6.00	-6.00	-0.51	4,691.9328	4,716.1079
			ults	l of measurement res	End		

Z-Axis Log Linearity at 12.59 Hz

Broadband level linearity with Wh-weighting

Level [m/s ²]	Measured [m/s ²]	Error [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result	
0.0839	0.0835	-0.41	-6.00	6.00	1.90	Pass	
0.0941	0.0918	-2.42	-6.00	6.00	2.80	Pass	
0.1491	0.1482	-0.66	-6.00	6.00	2.21	Pass	
0.4716	0.4690	-0.55	-6.00	6.00	1.90	Pass	
4,7161	4.7056	-0.22	-6.00	6.00	1.90	Pass	
47,1608	47.0206	-0.30	-6.00	6.00	1.90	Pass	
471.6082	468.8884	-0.58	-6.00	6.00	1.90	Pass	
4.203.2125	4,178.9516	-0.58	-6.00	6.00	1.90	Pass	
4,716.0820	4,691.8980	-0.51	-6.00	6.00	1.90	Pass	
	·	En	d of measurement res	sults			

Overload Detector

Overload indication performed according to ISO 8041:2005 13.12 with Fb-weighting

Measurement	Nominal [m/s ²]	Test Result [m/s ²]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result
X-Axis: Negative	4,931.68	4,931.68	-15.00	15.00	2.10	Pass
X-Axis: Positive	4,931.68	4,655.81	-15.00	15.00	2.10	Pass
Y-Axis: Negative	4,931.68	4,931.68	-15.00	15.00	2.10	Pass
Y-Axis: Positive	4,931.68	4,931.68	-15.00	15.00	2.10	Pass
Z-Axis: Negative	4,931.68	4,931.68	-15.00	15.00	2.10	Pass
Z-Axis: Positive	4,931.68	4,931.68	-15.00	15.00	2.10	Pass
		End of m	easurement results			

Page 7 of 15

Overload Comparison

Overload indication performed according to ISO 8041:2005 13.13 with Fb-weighting

Measurement	Test Result [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result
X-Axis	5.93	-15.00	15.00	2.50	Pass
Y-Axis	0.00	-15.00	15.00	2.50	Pass
Z-Axis	0.00	-15.00	15.00	2.50	Pass
	End of m	easurement results			

Cross-talk (Fb-weighting)

Cross-talk performed according to ISO 8041:2005 13.8

Injected : Read	Test Result [%]	Upper Limit [%]	Expanded Uncertainty [%]	Result
X-Axis : Y-Axis	0.002	0.50	1.90 ‡	Pass
X-Axis : Z-Axis	0.002	0.50	1.90 ‡	Pass
Y-Axis : X-Axis	0.002	0.50	1.90 ‡	Pass
Y-Axis : Z-Axis	0.001	0.50	1.90 ‡	Pass
Z-Axis : X-Axis	0.001	0.50	1.90 ‡	Pass
Z-Axis : Y-Axis	0.002	0.50	1.90 ‡	Pass

-- End of measurement results--

Frequency-weighted Noise Floor

Self-generated noise measured according to ISO 8041:2005 13.11

Weighting	Axis	Test Result [m/s ²]	Upper limit [m/s ²]	Result
Fb	X-Axis	0.037126	0.066800	Pass
	Y-Axis	0.045950	0.066800	Pass
	Z-Axis	0.042061	0.066800	Pass

-- End of measurement results--

Frequency [Hz]	Test Result [m/s ²]	Upper limit [m/s²]	Result
0.40	0.004175	0.022000	Pass
0.50	0.003199	0.020000	Pass
0.63	0.004244	0.018000	Pass
0.80	0.006123	0.017000	Pass
1.00	0.005643	0.015500	Pass
1.25	0.005166	0.014800	Pass
1.60	0.003880	0.014400	Pass
2.00	0.005196	0.014350	Pass
2.50	0.005647	0.014320	Pass
3.15	0.004604	0.014300	Pass
4.00	0.005273	0.014250	Pass
5.00	0.005131	0.014200	Pass
6.30	0.004931	0.014150	Pass
8.00	0.004572	0.014100	Pass
10.00	0.004207	0.014070	Pass
12.50	0.004094	0.014050	Pass
16.00	0.004416	0.014030	Pass
20.00	0.004544	0.014010	Pass
25.00	0.004657	0.014000	Pass
31.50	0.004321	0.014010	Pass
40.00	0.004496	0.014080	Pass
50.00	0.004440	0.014180	Pass
63.00	0.004792	0.014300	Pass
80.00	0.005071	0.014900	Pass
100.00	0.005342	0.015500	Pass
125.00	0.005557	0.016200	Pass
160.00	0.006112	0.017100	Pass
200.00	0.006419	0.018000	Pass
250.00	0.006875	0.019000	Pass
315.00	0.007517	0.020500	Pass
400.00	0.008231	0.021500	Pass
500.00	0.008917	0.022580	Pass
630.00	0.009899	0.024170	Pass
800.00	0.010837	0.025740	Pass
1,000.00	0.012064	0.027530	Pass
1,250.00	0.013347	0.029730	Pass
1.600.00	0.014943	0.032310	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

1681 West 820 North Provo, UT 84601, United States 716-684-0001

Frequency [Hz]	Test Result [m/s ²]	Upper limit [m/s²]	Result
2,000.00	0.016862	0.035000	Pass
2,500.00	0.019503	0.038500	Pass
	End of measu	rement results	

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

11/20/2019 12:50:18PM

Page 11 of 15

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

1681 West 820 North

Provo, UT 84601, United States 716-684-0001

Frequency [Hz]	Test Result [m/s ²]	Upper limit [m/s²]	Result
2,000.00	0.017006	0.035000	Pass
2,500.00	0.019643	0.038500	Pass
	End of measure	ment results	

Page 13 of 15

Frequency [Hz]

Frequency [Hz]	Test Result [m/s ²]	Upper limit [m/s²]	Result
0.40	0.004956	0.022000	Pass
0.50	0.005644	0.020000	Pass
0.63	0.005447	0.018000	Pass
0.80	0.006213	0.017000	Pass
1.00	0.007208	0.015500	Pass
1.25	0.006884	0.014800	Pass
1.60	0.004900	0.014400	Pass
2.00	0.008074	0.014350	Pass
2.50	0.005531	0.014320	Pass
3.15	0.006327	0.014300	Pass
4.00	0.005390	0.014250	Pass
5.00	0.005752	0.014200	Pass
6.30	0.005446	0.014150	Pass
8.00	0.005770	0.014100	Pass
10.00	0.006107	0.014070	Pass
12.50	0.005801	0.014050	Pass
16.00	0.005550	0.014030	Pass
20.00	0.005801	0.014010	Pass
25.00	0.005324	0.014000	Pass
31.50	0.005031	0.014010	Pass
40.00	0.005331	0.014080	Pass
50.00	0.005332	0.014180	Pass
63.00	0.005630	0.014300	Pass
80.00	0.005847	0.014900	Pass
100.00	0.005932	0.015500	Pass
125.00	0.006052	0.016200	Pass
160.00	0.006352	0.017100	Pass
200.00	0.006831	0.018000	Pass
250.00	0.007157	0.019000	Pass
315.00	0.008041	0.020500	Pass
400.00	0.008465	0.021500	Pass
500.00	0.009300	0.022580	Pass
630.00	0.010212	0.024170	Pass
800.00	0.011140	0.025740	Pass
1,000.00	0.012370	0.027530	Pass
1,250.00	0.013639	0.029730	Pass
1,600.00	0.015154	0.032310	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

1681 West 820 North

Frequency [Hz]	Test Result [m/s ²]	Upper limit [m/s ²]	Basult
2,000.00 2,500.00	0.017204 0.019720	0.035000	Pass
	End of measu	rement results	Pass

-- End of Report--

Signatory: <u>Eric Olson</u>

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

11/20/2019 12:50:18PM

£

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 www.modalshop.com

> g g Hz °C °F

Sensor Infor Model Number:	rmation SEN027	Cali Sens	bration Data itivity @ 100 Hz:	98.37	mV/g	Transducer S Amp. Range:	pecification ± 10	I S
Serial Number:	P228957			10.03	mV/m/s²	Resolution:	0.0002	g
Manufacturer:	Larson Davis	Phas	e @ 100 Hz:	-0.76	deg.	Resonant Freq:	≥ 27000	Н
ID Number:		Test	Level:	10.00	g	Temp. Range:	-10 to 50	°
							14 to 122	٩
Description:	ICP® Acceler	ometer				Axis:	X - Axis	
Data Table			Phase Respo	nse				
Freq. (Hz)	Deviation (%)	Phase (deg)	10					
5	1.9191	0.2093						
10	1.6509	-0.3837	; 5					
30	0.7747	-0.6157	(de					
50	0.4258	-0.6333	es of the second					
100	0.0000	-0.7590	°4 -5					
159	-0.3242	-0.7594	-10					
160	-0.3248	-0.7613	1		10	100		1000
200	-0.5044	-0.8291			Freque	ncy (Hz)		
300	-0.7700	-0.9624	Amplitude Re	sponse				
400	-0.8523	-1.0165	10					
500	-0.9544	-1.0786						
600	-0.9946	-1.1838	(%) 5					
700	-0.9788	-1.3014	6 0					
800	-0.9698	-1.4134	iati					
900	-0.8927	-1.5274	C- Dev					
1000	-0.8129	-1.6422	-10					
			1		10	100		1000
					Freque	ncy (Hz)		
			Notes Results relate or This certificate n	nly to the item nay not be rep	is calibrated. produced excep	t in full, without written	permision.	
			Method: Back-to	-Back Compa	arison Calibratio	n per ISO 16063 Part 2	1	

TMS Rental 3149 E. Kemper Rd Cincinnati, OH 45241 **User Notes**

Lab Conditions

Temperature:	77 (25)	°F (℃)
Humidity:	29	%

Cal Date: 19-Nov-19 Due Date:

Approval Information

Cal ID: 41971 Calibration Lab

Procedure Used: PRD-P220

Unit Condition

Data Aquisition Card	NI	PCI-4461	1A9CBC1	12/12/2019
Reference Std	PCB	080A200	175127	9/26/2020
Air Bearing Shaker	PCB	396C10	712	n/a
Ref Std Conditioner	PCB	442A102	261	9/26/2020
SUT Signal Conditioner	PCB	443B101	450	6/10/2020
Power Amplifier	TMS	2100E21-C	50097	n/a

Model

Serial

Proficiency in calibration traceable to PTB (17014/17004) and NIST (683/287323).

Measurement uncertainty (95% confidence level with coverage factor 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; ± 1.7%, 10-99 Hz; ± 1.2%, 100 Hz; ± 0.75%, 101-920 Hz; ± 1.0%, 921-5000 Hz; ± 1.4%, 5001-10,000 Hz; ± 1.9%,

Back-to-Back Comparison Calibration per ISO 16063-21

10,001-15,000 Hz; ± 2.2%, 15,001-20,000 Hz; ± 2.8%.

Due Date

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 www.modalshop.com

> g g Ηz °C °F

Sensor Info	mation	Cali	bration Data			Transducer S	pecification	S
Model Number:	SEN027	Sens	itivity @ 100 Hz:	101.7	mV/g	Amp. Range:	± 10	ç
Serial Number:	P228957			10.37	mV/m/s²	Resolution:	0.0002	Ç
Manufacturer:	Larson Davis	Phas	e @ 100 Hz:	-0.78	deg.	Resonant Freq:	≥ 27000	Н
ID Number:		Test	Level:	10.00	g	Temp. Range:	-10 to 50	٩
							14 to 122	0
Description:	ICP® Acceler	ometer				Axis:	Y - Axis	
Data Table			Phase Respo	nse				
Freq. (Hz)	Deviation (%)	Phase (deg)	•					
5	2.3018	0.1022	10					
10	1.8897	-0.4049	; 5					
30	0.6262	-0.6252	je je					
50	0.4331	-0.6322	Se O					
100	0.0000	-0.7830	equ -5					
159	-0.3504	-0.7841	-10					
160	-0.3522	-0.7870	1		10	100		1000
200	-0.5343	-0.8471			Freque	ncy (Hz)		
300	-0.8497	-0.9707	Amplitude Re	sponse				
400	-0.8903	-1.0360	10					
500	-0.9990	-1.1050	_					
600	-1.0431	-1.2125	۰ (%)					
700	-1.0343	-1.3300	6 0					
800	-1.0250	-1.4438	riati					
900	-0.9494	-1.5589	C- Dev					
1000	-0.8664	-1.6735	-10					Щ
			1		10 F ara and	100		1000
					Freque	ncy (Hz)		
			Notes					
			Results relate o	nly to the item	is calibrated.			
			This certificate r	nay not be re	produced excep	t in full, without written	permision.	
			Mothod: Book to	Pook Comp	uiaan Oalihuatia	n nor ICO 16060 Dort 0	-	
			Methou. Dack-to	-васк сотра	arison Calibratic	n per 150 16063 Part 2	1	

TMS Rental 3149 E. Kemper Rd Cincinnati, OH 45241 **User Notes**

Lab Conditions

Temperature:	77 (25)	°F (
Humidity:	29	%

°C)

Cal Date: 19-Nov-19 Due Date:

Approval Information

Cal ID: 41971 Calibration Lab

Back-to-Back Comparison Calibration per ISO 16063-21

As Found: In Tolerance As Left: In Tolerance

Equipment Used

Description	Manufacturer	Model	Serial	Due Date
Data Aquisition Card	NI	PCI-4461	1A9CBC1	12/12/2019
Reference Std	PCB	080A200	175127	9/26/2020
Air Bearing Shaker	PCB	396C10	712	n/a
Ref Std Conditioner	PCB	442A102	261	9/26/2020
SUT Signal Conditioner	PCB	443B101	450	6/10/2020
Power Amplifier	TMS	2100E21-C	50097	n/a

Proficiency in calibration traceable to PTB (17014/17004) and NIST (683/287323).

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 p.com

> g g Hz °C °F

10000

10000

						W	ww.modalshop.com
Sensor Infor Model Number: Serial Number: Manufacturer: ID Number:	mation SEN041F P105716 Larson Davis 73287	Calib Sensiti Phase Test Le	viration Data ivity @ 100 Hz: @ 100 Hz: evel:	10.59 1.080 -0.09 10.00	mV/g mV/m/s² deg. g	Transducer S Amp. Range: Resolution: Resonant Freq: Temp. Range:	5pecifications ± 500 0.008 ≥ 55000 -54 to 121
Description		amatar				Avio	-65 to 250
Description.		Smeler	Phase Been	0000		AXIS.	r - Axis
	Deviation (%)	Phase (dea)	rilase nesp	onse			
5	1 0265	4 1113	15				
6	0.6713	3 4187	$\widehat{}$ $\stackrel{10}{=}$				
7	0.4338	2,7298					
8	0.1877	2.4216	0 (
9	0.1345	2.0813	-5 D				
10	0.1136	1.8121	15				
30	-0.0581	0.5711	-13 +	10	100) 1000) 100
50	0.0120	0.2647			Frequence	y (Hz)	
100	0.0000	-0.0884	Amplitude F	Response			
300	0.0052	-0.7991	10	-			
500	0.0411	-1.3407	_				
1000	0.0829	-2.8490	% ⁵				
2000	-0.4015	-5.5889	6 0				
3000	-0.9759	-8.2314	riati				
4000	-1.4134	-10.5867					
			-10				
			1	10	Frequence) 1000 (Hz)) 100
					Frequenc	у (пz)	
			Notes				
			Results relate	only to the iten	ns calibrated.	6	
			i nis certificate	e may not be re	produced except II	i iuli, without written	permision.
O			Method: Back	to-Back Comp	arison Calibration	per ISO 16063 Part 2	21
TMS Bootel			This calibration	n was performe	ea with TMS 9155	Calibration Workstati	on 2 version 6.0.0
11VIO FIEIILAI	por Pd		Proticiency in	Comporison Co	eable to PTB (170	14/17004) and NIST	(003/20/323).
Cincinnati			Dack-IU-Dack		and alloring per 150	10003-21	
User Notes	Π 43241		Measurement ranges tested Hz; ± 0.75%. 1	uncertainty (95 during calibrati 101-920 Hz: ± 1	% confidence leve on are as follows: 1.0%, 921-5000 Hz	el with coverage facto 5-9 Hz; ± 1.7%, 10-9 ;; ± 1.4%, 5001-10.00	or 2) for frequency 9 Hz; ± 1.2%, 100 00 Hz; ± 1.9%.

Lab Conditions

Temperature:	71 (21)	°F (℃)
Humidity:	31	%

Cal Date: 17-Dec-19 Due Date:

Approval Information

Cal ID:

10,001-15,000 Hz; ± 2.2%, 15,001-20,000 Hz; ± 2.8%. **Unit Condition** As Found: In Tolerance

In Tolerance As Left:

Equipment Used

Description	Manufacturer	Model	Serial	Due Date
Data Aquisition Card	NI	PCI-4461	1D22DFB	10/25/2020
Reference Std	PCB	080A200	175127	9/26/2020
Air Bearing Shaker	PCB	396C10	712	n/a
Ref Std Conditioner	PCB	442A102	261	9/26/2020
SUT Signal Conditioner	PCB	443B101	450	6/10/2020
Power Amplifier	TMS	2100E21-C	50097	n/a

3149 East Kemper Rd. Cincinnati, OH 45241 Ph: 513-351-9919 Fax: 513-458-2172 www.modalshop.com

S

g g Hz °C °F

10000

10000

0.0

							inouuloirop
Sensor Info	rmation	Cali	bration Data			Transducer S	Specification
Model Number:	SEN041F	Sens	itivity @ 100 Hz:	10.55	mV/g	Amp. Range:	± 500
Serial Number:	P105716			1.076	mV/m/s²	Resolution:	0.008
Manufacturer:	Larson Davis	Phas	e @ 100 Hz:	-0.07	deg.	Resonant Freq:	≥ 55000
ID Number:	73287	Test	Level:	10.00	g	Temp. Range:	-54 to 121
							-65 to 250
Description:	ICP® Acceler	ometer				Axis:	Z - Axis
Data Table			Phase Res	ponse			
Freq. (Hz)	Deviation (%)	Phase (deg)	15				
5	-0.8924	3.1475	10				
6	-0.7294	2.8296	(i) 5				
7	-0.3957	2.2204	(de				
8	-0.2825	1.9435	ese -5				
9	-0.4602	1.5860	ü -10				
10	-0.7490	1.6659	-15				
30	-0.1825	0.4173	1	10	100	1000)
50	-0.0937	0.2382			Frequency	(Hz)	
100	0.0000	-0.0702	Amplitude	Response			
300	0.1205	-0.7755	10				
500	0.1458	-1.2981	o 5				
1000	0.2164	-2.7847	(%)				
2000	-0.1535	-5.5267	0				
3000	-0.7815	-8.1888	-5 viat				
4000	-1.4581	-10.4649	Ď				
			-10	10	100	100	<u>ר ו ו ו ו ו ו</u>
			I	10	Frequency	(Hz)	5
			Natas			()	
					a a libuata d		
	-		This contificat	e only to the iten	ns calibrated.	ull without written	permision
			Mathadi Daal				
Customor			This solibration	R-IO-Back Comp	anson Calibration pe	libration Workstat	≤I Ion 2 vorsion 6
TMS Rental			Proficiency in	calibration track	able to PTR (1701/	(17004) and NICT	(683/287322)
3149 F Kom	iner Bd		Back-to-Back	Comparison C	alibration per ISO 16	063-21	(000/20/020).
Cincinnati O	H 45241		Procedure He	ed PRD-P220		000 21	
	11 70271		Ne service US	500. T TLD-T 220	O/		0) ((

User Notes

Lab Conditions

Temperature:	71 (21)	°F (℃)
Humidity:	31	%

Cal Date: 17-Dec-19 Due Date:

Approval Information

2649.01 Cal ID: 42274 Calibration Lab

ACCREDITED

Measurement uncertainty (95% confidence level with coverage factor 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; ± 1.7%, 10-99 Hz; ± 1.2%, 100 Hz; ± 0.75%, 101-920 Hz; ± 1.0%, 921-5000 Hz; ± 1.4%, 5001-10,000 Hz; ± 1.9%, 10,001-15,000 Hz; ± 2.2%, 15,001-20,000 Hz; ± 2.8%.

Unit Condition

As Found: In Tolerance In Tolerance As Left:

Equipment Used

Description	Manufacturer	Model	Serial	Due Date
Data Aquisition Card	NI	PCI-4461	1D22DFB	10/25/2020
Reference Std	PCB	080A200	175127	9/26/2020
Air Bearing Shaker	PCB	396C10	712	n/a
Ref Std Conditioner	PCB	442A102	261	9/26/2020
SUT Signal Conditioner	PCB	443B101	450	6/10/2020
Power Amplifier	TMS	2100E21-C	50097	n/a

6031 103A Street Edmonton, AB T6H 2J7 1-888-207-2212 www.conceptcontrols.com

Certificate of Calibration

Certificate Number: 209567NXI070043

Submitted by:	Concept Controls Inc 1565 Rue Begin ST Laurent, QC, Canada, H4R 1W9	Date Issued: Valid until:	31-Oct-19 30-Oct-20
Order Number:	209567		
Model:	NoisePro DLX	Serial number:	NXI070043
Sub-Assemblies:	Type 2 Pendant Microphone	Serial number:	NA
Test Condition:		Model condition:	
Temperature :	18 C to 29 °C	As Found:	In Tolerance
Humidity:	20% to 80%	As Left:	In Tolerance
Barometric Pressure:	890mbar to 1050mbar		
Calibration per Procedu	ure: V053-864		
Reference Standard(s):			
ID Number:	Device:	Last Calibration:	Calibration Due:
CCI0001	B & K Ensemble	19-Jun-19	19-Jun-20
CCI0004	Quest Cal	12-Feb-19	12-Feb-20

Measurement Uncertainty: ± 2.2% Accoustic (0.19DB) Estimated at 95% confidence level (k=2)

Calibrated By:

lan Holt

31-Oct-19

This report certifies that all calibration equipment used in the test is traceable to NIST, and applies only to the unit identified under equipment above. This report must not be reproduced except in its entirely without the written approval of Concept Controls Inc.

6031 103A Street Edmonton, AB T6H 2J7 1-888-207-2212 www.conceptcontrols.com

12-Feb-20

Certificate of Calibration

Certificate Number: 209567NXN030014

Submitted by: Order Number:	Concept Controls Inc 1565 Rue Begin ST Laurent, QC, Canada, H4R 1W9 209567	Date Issued: Valid until:	31-Oct-19 30-Oct-20
Model: Sub-Assemblies:	NoisePro DLX Type 2 Pendant Microphone	Serial number: Serial number:	NXN030014 NA
Test Condition: Temperature : Humidity: Barometric Pressure:	18 C to 29 °C 20% to 80% 890mbar to 1050mbar	Model condition: As Found: As Left:	In Tolerance In Tolerance
Calibration per Procedu	re: V053-864		
Reference Standard(s): ID Number: CCI0001 CCI0004	Device: B & K Ensemble Quest Cal	Last Calibration: 19-Jun-19 12-Feb-19	Calibration Due: 19-Jun-20 12-Eeb-20

Measurement Uncertainty: ± 2.2% Accoustic (0.19DB) Estimated at 95% confidence level (k=2)

Calibrated By:

lan Holt

31-Oct-19

This report certifies that all calibration equipment used in the test is traceable to NIST, and applies only to the unit identified under equipment above. This report must not be reproduced except in its entirely without the written approval of Concept Controls Inc.

6031 103A Street Edmonton, AB T6H 2J7 1-888-207-2212 www.conceptcontrols.com

12-Feb-20

Certificate of Calibration

Certificate Number: 209567NXL070014

Submitted by: Order Number:	Concept Controls Inc 1565 Rue Begin ST Laurent, QC, Canada, H4R 1W9 209567	Date Issued: Valid until:	31-Oct-19 30-Oct-20
Model: Sub-Assemblies:	NoisePro DLX Type 2 Pendant Microphone	Serial number: Serial number:	NXL070014 NA
Test Condition: Temperature : Humidity: Barometric Pressure:	18 C to 29 °C 20% to 80% 890mbar to 1050mbar	Model condition: As Found: As Left:	In Tolerance In Tolerance
Calibration per Procedur	e: V053-864		
Reference Standard(s): ID Number:	Device		
CCl0001	B&KEnsemble	Last Calibration:	Calibration Due:
CC10004		19-Jun-19	19-Jun-20

12-Feb-19

Measurement Uncertainty: ± 2.2% Accoustic (0.19DB) Estimated at 95% confidence level (k=2)

Calibrated By:

lan Holt

Quest Cal

31-Oct-19

This report certifies that all calibration equipment used in the test is traceable to NIST, and applies only to the unit identified under equipment above. This report must not be reproduced except in its entirely without the written approval of Concept Controls Inc.

PCO. Test & Verification

Customer: Concept Controls

Instrument: 850007

Serial Number: Q885108

Manufacturer: Sper Scientific

File Number: T-SO718

PCO certifies that the subject instrument was tested for illuminance on this date using the following equipment:

PR670 S/N 67171703 Calibrated using illuminance standards traceable to NIST F-804 working standard lamp OL83A Programmable Current Source

Calibration room temperature: 23 C Humidity: 30%

Calibration of this instrument was performed using procedure:Cal.illum.3% Color Temperature: 2856K

Reference	Initial Reading	Out of Tolerance
1000 lux	951 lux	4.9%
122 lux	117 lux	4.1%
10000lux	9554 lux	4.46%

Correction Factor: Readings X 1.05

This instrument was found to be within 3%____/ greater than 3%

This report and data it contains is valid for 12 months from the date of issue.

Date of Issue: February 6, 2020

PCO-TECH (USA) formerly Cooke 6930 Metroplex Dr. Romulus, MI 48174 866-662-6653 PCO Photonics (Canada) formerly Optikon 1099 Guelph St. Kitchener, ON N2B 2E4 866-678-4566

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions				1oppi		7545			
Te	MPERATURE		70.35 (21.3)	°F (°C)		INODEL		7 545	
RE	LATIVE HUMIDI	ſγ	46.2	%RH					
Вл	rometric Pres	SURE	29.18 (988.1)	inH⊴ (hPa))	ERIAL NUMB	ER	175451228006	
	🛛 As Left			a 🛛	n l'ole	RANCE			
	As Found			Π0	DUT OF	LOUERANCE			
		- C A L	IBRATI	ON VER	1.6	CATIO	N RESUL	T S	
TE	MPERATURE	VERIFICATION			SYS	гем Т-101		Unit: °F (°C)	
7	STANDARD	MEASURED	ALLOWAB	LE RANCE	2	STANDARD MEASURED		ALLOWARDE RANCE	
1	32.1 (0.0)	32,4 (0.2)	31 (533.)	(-0.5-0.6) 1		20 0 (60 3)	J40.1 (50.1)	139.0~141.0 (59.5~60.6)	
Hu	IMIDITY VERI	FICATION			SYS	гъм н-102		Unit: %RH	
#	STANDARD	MEASURED	ALLOW	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	10.0	9.3	7.	8~12.2	4	70.0	69.8	67.8~72.2	
2	30.0	29.5	27	.8~32.2	1.5	90.0	89.6	87 8~92.2	
3	50.0	50.0	47	.8~52.2					
C	D2 GAS VERIF	ICATION			SYS	гъм G-101		Unit: ppm	
#	STANDARD	MEASURED	ALLOW	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	0	0		0~50	4	3020	3027	2929~3110	
2	502	506	452~552		5	5056	5062	4904~5208	
3	1005	1029	95	5~1035					
CC) GAS VERIFF	CATION			Sys	гем G-101		Unit: ppm	
#	STANDARD	MEASURED	ALLOW.	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
A.	35	36		32~38	2	101	100	98~104	

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001;2015

Measurement Variable	System ID	Last Cal.	Cal. Due	i.	Measurement Variable	System ID	Last Cal.	Cal Due
Temperature	E010657	02-14-20	02-28-21	- 1	Temperature	F010658	02-14-20	02-28-21
Temperture	E010655	01-21-20	01-31-21	- H	Humujity	F003539	02-26-20	08-31-20
5000 CO2	14A044095	04-06-20	94-06-25		200 CC	149886	04-50-20	13-24-28
N2	1-0603	65 19-29	05-19-25	'1	Arr	117919	62+69-70	04-92-28
Flow	E003341	09-03-19	09-30-20	1	Flow	1003980	64-22-26	04-50-21
Flow	E003525	01-06-20	01-31-21		Flow	1.005342	09-03-19	09-30-20
2000 C4H8	EB0054467	08-13-19	08-12-22		100 C 4218	CC507339	03-24-20	03-24-28

Va Calibrated

June 17, 2020

DATE

Ēnv	IRONMENT CO	ONDITIONS				М	ODEL		7545	
Тем	PERATURE		74.5 (23.6)	°F (°C)						
REL	ATIVE HUMIDIT	Y	. 39	%RH		er	DIAL NUMP	FD	T75451228006	
BAR	OMETRIC PRESS	URE	29.21 (989.2)	inHg (hPa)		SE	RIAL INUMB	LK	110401220000	
-	AS LEFT				In To	LE	RANCE			
	AS FOUND			\boxtimes	OUT	OF 🤇	FOLERANCE			
-	Lans 100mb			NI T			6 . T I O	NDESHI	Τ\$-	
		– C A L	IBRATI	ON VE	RLI	F 1	CATIO	N NESUL	1.1.9	
GA	S CO2 AS FC	UND			S	YST	ЕМ G-101		Unit: pp	
#	STANDARD	MEASURED	ALLOW	ALLOWABLE RANGE		#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	Ü	0		0~50	8 -	4	3014	2975	2928~3109	
2	502.2	* 440.4	452	2.2~552.2		5	5056	4968	4904~5208	
3	1006	1001	9:	956~1056			_			
G4	S CO AS FO	UND			S	yst	тем G-101	.07	Unit: pp	
#	STANDARD	MEASURED	ALLOW	ABLE RANGE		#1	STANDARD	MEASURED	ALLOWABLE RANGE	
1	35	36		32~38		2	101	98	98~104	
тг	MDEDATID	E AS FOUNT)		S	YST	TEM T-101		Unit: °F (°C	
110	STANDARD	MEASURED	ALLOWAL	BLE RANGE	# STAP		TANDARD	MEASURED	ALLOWABLE RANGE	
#	32 1 (0 0)	32.4 (0.2)	31.1~33.1	(-0.5~0.6)	2	1	40.0 (60.0)	140.1 (60.1)	139.0~141.0 (59.5~60.6)	
1	52.1 (0.0)				C.	VOT	ENA LI 102		Unit: %R	
H	JMIDITY AS	FOUND			3	451	EM H-102	MEASURER	ALLOWABLE RANGE	
#	STANDARD	MEASURED	ALLOW	ALLOWABLE RANGE		#	TANDARD	67.2	67.0~73.0	
1	10.0	9.3	7	0.21-0.0	-	4	70.0	* 96.2	87.02~93.02	
2	30.0	28.5	2	7.0~33.0	-	2	90.02	00.3	01.02 70.02	
3	50.0	48.1	4	7.0~53.0						

*Indicates Out-of-Tolerance Condition

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Manuramont Variable	System 1D	Last Cal	Cal. Due	Measurement Variable	System ID	Last Cal.	Cal. Due
Neasticition variable	144044005	04-06-20	04-06-25	200 CO	149886	04-30-20	03-24-28
5000 CO2	T4/1044072	05-10-20	05-19-28	Air	T17939	04-09-20	04-09-28
N2	1-0000	00.03.10	09-30-20	Flow	E003980	04-22-20	04-30-21
Flow	E003341	07-03-19 w1 04 20	09-00-20 AL 21.21	Flow	E003342	69-03-19	.(9-30-20
Flow	2003525	01-00-20	09 12.27	100 C4H8	CC507339	03-24-20	03-24-28
2000 C4H8	EB0054467	03-13-19	02 28 21	Temperature	F010658	02-14-20	02-28-21
Temperature	E010657	02-14-20	02-28-21	1 femperature	E003530	02-26-20	08-31-20
Tennerture	E010655	01-21-20	01-31-21	Humany	12002222	02-20-20	00 21 20

Va Crue 8

June 16, 2020

DATE

DOC ID. CERT_GEN_WCC

APPENDIX B

Dosimetry session reports

Indoor noise level report - 380 person camp (Milne port)

2020-07-26

Information Panel

Name	NXN030014_2672020_180005
Comments	
Company Name	
Description	
Location	
User Name	
Start Time	2020-07-26 18:00:05
Stop Time	2020-07-27 06:00:05
Run Time	12:00:00
Device Name	NXN030014
Serial Number	NXN030014
Model Type	NoisePro DLX
Device Firmware Rev	R176

Calibration History

Date		Level	<u>Serial Number</u>	Certification Date
2020-07-24 08:02:57	Calibration	114,0		
2020-07-27 09:20:46	Verification	114,0		

SLM Q3

Description	<u>Meter</u>	<u>Value</u>	Description	Meter	<u>Value</u>
Dose	3	0,4 %	Leq	3	65 dB
Response	3	SLOW	Exchange Rate	3	3 dB
Weighting	3	А	Dosimeter Name	3	SonoQ3
Rtime	3	12:00:00	Log Rate		60 s

Indoor noise level report - PSC (Milne port)

2020-07-29

Information Panel

Name	NXN030014_2972020_180005
Comments	
Company Name	
Description	
Location	
User Name	
Stop Time	2020-07-30 06:00:05
Start Time	2020-07-29 18:00:05
Run Time	12:00:00
Device Name	NXN030014
Serial Number	NXN030014
Model Type	NoisePro DLX
Device Firmware Rev	R176

Calibration History

Date		Level	<u>Serial Number</u>	Certification Date
2020-07-29 08:00:35	Calibration	114,0		
2020-07-30 17:26:15	Verification	114,1		

SLM Q3

Description	Meter	<u>Value</u>	Description	<u>Meter</u>	Value
Dose	3	0,4 %	Leq	3	65 dB
Response	3	SLOW	Exchange Rate	3	3 dB
Weighting	3	А	Rtime	3	12:00:00
UL Time	3	00:00:00	Dosimeter Name	3	SonoQ3
Log Rate		60 s			

Indoor noise level report - Sailiivik camp (Mary River Mine)

2020-08-03

Information Panel

Name	NXN030014_382020_180005
Comments	
Company Name	
Description	
Location	
User Name	
Device Name	NXN030014
Serial Number	NXN030014
Model Type	NoisePro DLX
Device Firmware Rev	R176
Stop Time	2020-08-04 06:00:05
Start Time	2020-08-03 18:00:05
Run Time	12:00:00

Calibration History

Date		Level	<u>Serial Number</u>	Certification Date
2020-08-03 10:41:21	Calibration	114,0		
2020-08-04 06:07:33	Verification	114,0		

SLM Q3

Description	Meter	Value	Description	<u>Meter</u>	<u>Value</u>
Dose	3	0,4 %	Leq	3	65 dB
Response	3	SLOW	Exchange Rate	3	3 dB
Weighting	3	А	Rtime	3	12:00:00
Dosimeter Name	3	SonoQ3	ULL	3	115 dB
UL Time	3	00:00:00	Log Rate		60 s

APPENDIX C

Vibration session reports

HVM General Information	1									
Serial Number	0001526									
Model	HVM200	HVM200								
Firmware Version	4.5.0R0	4.5.0R0								
HVM File Name	HVM_000152	HVM_0001526_200726_164558.00.hvm2								
User	BIM - MP									
Location	380 Man cam	380 Man camp - MP								
Job Description	accomodation	ı - NIRB								
Note	2020-07-26									
Setup										
Operating Mode	WholeBody									
Averaging	5 minutes									
Exposure Limit	1.15									
Exposure Action	0.50									
Integration	None									
Selected Accelerometer	ICP									
	х	У	Z							
Sensitivity mV/(m/s ²)	10,030000	10,370000	9,930000							
Weighting	Wm	Wm	Wm							
k-Factors	1.0000	1.0000	1.0000							
Que esta										
Overall Data	2020 Jul 20 1	6.45.59								
Start Date and Time	2020-Jul-26 1	0:45:58								
Run Time (nn:mm:ss)	13:50:40									
	x	V	7	Sum	Units					
3	0.0022	0.0020	0.0025	0.0020	m /c ²					
	0,0022	0,0020	0,0025	0,0059	m/s^2					
	0,0042	0,0040	0,0224	0,0229	111/5-					
ареак	0,0172	0,0130	0,0510	0,0520	m/s²					
амія	0,0010	0,0009	0,0017	0,0027	m/s²					
A(8)	0,0029	0,0027	0,0033	0,0033	m/s²					
A(8) Act.	>24	>24	>24	>24	Hours					
A(8) Exp.	>24	>24	>24	>24	Hours					
VDV	0,0424	0,0407	0,0720	0,0720	m/s^1.75					
Exposure Points				0	Points					

HVM General Information										
Serial Number	0001526									
Model	HVM200									
Firmware Version	4.5.0R0									
HVM File Name	HVM_00015	526_200729_	_161051.01.	hvm2						
User	BIM - MP									
Location	PSC - BB06									
Job Description	Accomodati	on								
Note	2020-07-29	2020-07-29								
Setup										
Operating Mode	WholeBody									
Averaging	5 minutes									
Exposure Limit	1.15									
Exposure Action	0.50									
Integration	None									
Selected Accelerometer	ICP									
	Х	У	Z							
Sensitivity mV/(m/s ²)	10,030000	10,370000	9,930000							
Weighting	Wm	Wm	Wm							
k-Factors	1.0000	1.0000	1.0000							
Overall Data										
Overall Data	2020 101 20	10.10.51								
Start Date and Time	2020-Jui-29	10:10:21								
Run Time (nn:mm:ss)	14:55:37									
	х	v	Z	Sum	Units					
Anuc	0.0012	0.001/	0.0018	0.0025	m/s^2					
	0,0012	0,0014	0,0018	0,0023	m/s^2					
	0,0028	0,0039	0,0072	0,0082	11/5					
ареак	0,0122	0,0131	0,0216	0,0243	m/s²					
amin	0,0006	0,0006	0,0010	0,0015	m/s²					
A(8)	0,0017	0,0019	0,0024	0,0024	m/s²					
A(8) Act.	>24	>24	>24	>24	Hours					
A(8) Exp.	>24	>24	>24	>24	Hours					
VDV	0,0250	0,0280	0,0357	0,0357	m/s^1.75					
Exposure Points				0	Points					

HVM General Information	l .								
Serial Number	0001526								
Model	HVM200	HVM200							
Firmware Version	4.5.0R0								
HVM File Name	HVM_000152	HVM_0001526_200803_170231.00.hvm2							
User	BIM	BIM							
Location	MRM								
Job Description	Sailiivik Camp	- C2-04							
Note	2020-08-03	2020-08-03							
Setup									
Operating Mode	WholeBody								
Averaging	5 minutes								
Exposure Limit	1.15								
Exposure Action	0.50								
Integration	None								
Selected Accelerometer	ICP								
	х	У	Z						
Sensitivity mV/(m/s²)	10,030000	10,370000	9,930000						
Weighting	Wm	Wm	Wm						
k-Factors	1.0000	1.0000	1.0000						
Overall Data									
Start Date and Time	2020-Aug-03	17:02:31							
Run Time (hh:mm:ss)	13:03:17								
	х	У	z	Sum	Units				
arms	0,0014	0,0014	0,0018	0,0027	m/s²				
ΜΤ٧٧	0,0031	0,0038	0,0042	0,0063	m/s²				
ареак	0.0126	0.0167	0.0222	0.0223	m/s ²				
 A	0,0008	0.0007	0.0010	0 0019	m/s^2				
	0,0000	0,0007	0,0010	0,0010	m/c^2				
A(0) A(9) Act	0,0018	524	0,0023 N24	0,0023 N24	III/S ⁻				
A(0) ALL.	>24	~24 \\24	>24	>24	Hours				
	~24 0.0272	~24 0.0290	~24 0.0250	~24 0.0250					
	0,0273	0,0280	0,0350	0,0350	III/S^1./5				
Exposure Points				U	POINTS				

APPENDIX D

Certificate of analysis

Identifiant au Programme EMPAT de l'AIHA : no 193773

Certificat d'analyses microbiologiques Identification des spores de moisissures cultivables ou non dans l'air

Client :	Monsieur Ballot - HDS Environnement (2888)		
Identification du projet	Projet HDS-8664-2 Q3 (62273)	Date de réception	11 août 2020
Adresse d'échantillonnage	BIM	Date d'échantillonnage	23 au 31 juillet 2020
Type d'échantillonnage	Air-O-Cell	Date d'analyse	18 août 2020

Identification	3100-0323 (2020-07-23)		3100-0316 (2020-07-23)			3100-0313 (2020-07-23)			
No. d'échantillon		108671	l	108672			108673		
Volume d'air (L)		75,00			75,00			75,00	
Spores Fongiques	Compte	%	spores /m³	Compte	%	spores /m³	Compte	%	spores /m³
Ascospores	5	18	67	8	38	107			
Basidiospores	22	79	293	12	57	160	3	75	40
Cladosporium sp.	1	4	13						
Fragment d'hyphe				1	5	13			
Aspergillus/Penicillium sp.							1	25	13
Totaux	28	100	373	21	100	280	4	100	53
Limites de détection (spores/m ³)	13		13		13				
Débris		3			3			3	

Identification	3100-0	3100-0304 (2020-07-23)			3100-0321 (2020-07-23)			3100-0322 (2020-07-31)		
No. d'échantillon		108674			108675			108676		
Volume d'air (L)		75,00			0,00			75,00		
Spores Fongiques	Compte	%	spores /m ³	Compte	%	spores /m ³	Compte	%	spores /m³	
Basidiospores	3	75	40	-	-	-	2	18	27	
Fragment d'hyphe	1	25	13	-	-	-				
Ascospores							9	82	120	
Totaux	4	100	53	-	-	-	11	100	147	
Limites de détection (spores/m ³)	13			-			13			
Débris	3			0			3			

Identification	3100-3925 (2020-07-31)			3100-3934 (2020-07-31)			3100-0318 (2020-07-31)		
No. d'échantillon	108677			108678			108679		
Volume d'air (L)	75,00			75,00			75,00		
Spores Fongiques	Compte	%	spores /m ³	Compte	%	spores /m ³	Compte	%	spores /m³
Ascospores	6	55	80	5	22	67	1	50	13
Aspergillus/Penicillium sp.	1	9	13	17	74	227			
Basidiospores	3	27	40	1	4	13	1	50	13
Cladosporium sp.	1	9	13						
Totaux	11	100	146	23	100	307	2	100	26
<i>Limites de détection (spores/m³)</i>	13			13			13		
Débris	3			3			3		

Identifiant au Programme EMPAT de l'AIHA : no 193773

Identification	3100-0302 (2020-07-31)		3100-0283 (2020-07-26)			3100-0311 (2020-07-26)				
No. d'échantillon	108680			108681			108682			
Volume d'air (L)		0,00		75,00			75,00			
Spores Fongiques	Compte	%	spores /m³	Compte	%	spores /m³	Compte	%	spores /m ³	
Ascospores	-	-	-	1	33	13				
Basidiospores	-	-	-	2	67	27	3	100	40	
Totaux	-	-	-	3	100	40	3	100	40	
<i>Limites de détection (spores/m³)</i>		-			13			13		
Débris		0			4			4		
Identification	3100-0	314 (202	20-07-26)	3100-0	310 (202	20-07-26)	3100-3923 (2020-07-26)			
No. d'échantillon		108683	3		108684	1		108685	5	
Volume d'air (L)		75,00			75,00			0,00		
Spores Fongiques	Compte	%	spores /m ³	Compte	%	spores /m ³	Compte	%	spores /m ³	
Basidiospores	1	50	13	2	29	27	-	-	-	
Cladosporium sp.	1	50	13	1	14	13	-	-	-	
Ascospores				1	14	13	-	-	-	
Aspergillus/Penicillium sp.				2	29	27	-	-	-	
Fragment d'hyphe				1	14	13	-	-	-	
Totaux	2	100	26	7	100	93	-	-	-	
<i>Limites de détection (spores/m³)</i>		13		13				-		
Débris		3		3			0			
Identification	3100-0	296 (202	20-07-25)	3100-0	312 (202	20-07-25)	3100-0	319 (202	20-07-25)	
No. d'échantillon		108686	5	108687			108688			
Volume d'air (L)		75,00		75,00			75,00			
Spores Fongiques	Compte	%	spores /m³	Compte	%	spores /m³	Compte	%	spores /m³	
Ascospores	2	17	27	2	18	27				
Basidiospores	10	83	133	9	82	120	2	50	27	
Aspergillus/Penicillium sp.							1	25	13	
Cladosporium sp.							1	25	13	
Totaux	12	100	160	11	100	147	4	100	53	
Limites de détection (spores/m ³)		13		13			13			
Débris	3			3			3			

Identifiant au Programme EMPAT de l'AIHA : no 193773

Identification	3100-0	3100-0305 (2020-07-25)			3100-3928 (2020-07-25)			3100-0309 (2020-07-28)		
No. d'échantillon		108689			108690			108691		
Volume d'air (L)		75,00			0,00			75,00		
Spores Fongiques	Compte	%	spores /m ³	Compte	%	spores /m ³	Compte	%	spores /m ³	
Basidiospores	3	100	40	-	-	-	16	76	213	
Ascospores				-	-	-	1	5	13	
Aspergillus/Penicillium sp.				-	-	-	1	5	13	
Cladosporium sp.				-	-	-	2	10	27	
Fragment d'hyphe				-	-	-	1	5	13	
Totaux	3	100	40	-	-	-	21	100	279	
Limites de détection (spores/m ³)		13			-			13		
Débris	3			0			3			

Identification	3100-0307 (2020-07-28)			3100-0294 (2020-07-28)			3100-0282 (2020-07-28)		
No. d'échantillon	108692			108693			108694		
Volume d'air (L)	75,00			75,00			75,00		
Spores Fongiques	Compte	%	spores /m³	Compte	%	spores /m³	Compte	%	spores /m³
Ascospores	2	15	27	2	40	27			
Basidiospores	10	77	133	2	40	27	2	100	27
Cladosporium sp.	1	8	13	1	20	13			
Totaux	13	100	173	5	100	67	2	100	27
Limites de détection (spores/m ³)	13			13			13		
Débris	2			2			2		

Identification	3100-0325 (2020-07-28)					
No. d'échantillon	108695					
Volume d'air (L)	0,00					
Spores Fongiques	Compte	%	spores /m³			
Totaux	-	-	-			
<i>Limites de détection (spores/m³)</i>	-					
Débris	0					

Notes :

• Les résultats de l'essai ne se rapportent qu'aux échantillons reçus.

• Le mandat du laboratoire ACM se limite à l'analyse des échantillons reçus. L'interprétation des résultats est à l'entière responsabilité de l'expert/échantillonneur.

• Méthode IRSST MA-367-m et ASTM D 7391-09-m

• La présence de débris peut cacher certaines spores. Les comptes ayant des débris de niveau 4 doivent être considérés comme sous-estimés. (0 = pas de débris, 1: débris léger. 2: débris moyen, 3: débris nombreux, 4 : débris très nombreux).

• Le type Aspergillus/Penicillium sp. peut inclure Acremonium, Trichoderma, Paecilomyces et d'autres types similaires.

• No. d'échantillon 108675: Aucune spore et/ou débris détectés.

• No. d'échantillon 108680: Aucune spore et/ou débris détectés.

• No. d'échantillon 108685: Aucune spore et/ou débris détectés.

• No. d'échantillon 108690: Aucune spore et/ou débris détectés.

• No. d'échantillon 108695: Aucune spore et/ou débris détectés.

umm AIOLO the Valérie Hue Valérie Hue, B.Sc., Microbiologiste Agréée QUEBEC anonumun

Analyste :